This paper presents a CAD-based approach for automated surface defect detection. We leverage the a-priori knowledge embedded in a CAD model and integrate it with point cloud data acquired from commercially available stereo and depth cameras. The proposed method first transforms the CAD model into a high-density polygonal mesh, where each vertex represents a state variable in 3D space. Subsequently, a weighted least squares algorithm is employed to iteratively estimate the state of the scanned workpiece based on the captured point cloud measurements. This framework offers the potential to incorporate information from diverse sensors into the CAD domain, facilitating a more comprehensive analysis. Preliminary results demonstrate promising performance, with the algorithm achieving convergence to a sub-millimeter standard deviation in the region of interest using only approximately 50 point cloud samples. This highlights the potential of utilising commercially available stereo cameras for ...

Surface defect identification using Bayesian filtering on a 3D mesh / Dalle Vedove, Matteo; Bonetto, Matteo; Lamon, Edoardo; Palopoli, Luigi; Saveriano, Matteo; Fontanelli, Daniele. - In: MEASUREMENT. SENSORS. - ISSN 2665-9174. - (2025). ( IMEKO Hamburg 26th - 29th August 2024) [10.1016/j.measen.2025.101849].

Surface defect identification using Bayesian filtering on a 3D mesh

Dalle Vedove, Matteo;Bonetto, Matteo;Lamon, Edoardo;Palopoli, Luigi;Saveriano, Matteo;Fontanelli, Daniele
2025-01-01

Abstract

This paper presents a CAD-based approach for automated surface defect detection. We leverage the a-priori knowledge embedded in a CAD model and integrate it with point cloud data acquired from commercially available stereo and depth cameras. The proposed method first transforms the CAD model into a high-density polygonal mesh, where each vertex represents a state variable in 3D space. Subsequently, a weighted least squares algorithm is employed to iteratively estimate the state of the scanned workpiece based on the captured point cloud measurements. This framework offers the potential to incorporate information from diverse sensors into the CAD domain, facilitating a more comprehensive analysis. Preliminary results demonstrate promising performance, with the algorithm achieving convergence to a sub-millimeter standard deviation in the region of interest using only approximately 50 point cloud samples. This highlights the potential of utilising commercially available stereo cameras for ...
2025
Measurement: Sensors
Amsterdam
Elsevier Ltd
Dalle Vedove, Matteo; Bonetto, Matteo; Lamon, Edoardo; Palopoli, Luigi; Saveriano, Matteo; Fontanelli, Daniele
Surface defect identification using Bayesian filtering on a 3D mesh / Dalle Vedove, Matteo; Bonetto, Matteo; Lamon, Edoardo; Palopoli, Luigi; Saveriano, Matteo; Fontanelli, Daniele. - In: MEASUREMENT. SENSORS. - ISSN 2665-9174. - (2025). ( IMEKO Hamburg 26th - 29th August 2024) [10.1016/j.measen.2025.101849].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/448550
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact