In the context of vehicle trajectory planning, motion primitives are trajectories connecting pairs of boundary conditions. In autonomous racing, motion primitives have been used as computationally faster alternatives to model predictive control, for online obstacle avoidance. However, the existing motion primitive formulations are either simplified and suboptimal, or computationally expensive for accurate collision avoidance. This paper introduces new motion primitives for autonomous racing, aiming to accurately approximate the minimum-time vehicle trajectories while ensuring computational efficiency. We present a novel neural network, named PathPoly-NN, whose internal architecture is designed to learn the minimum-time vehicle path. Our motion primitives combine PathPoly-NN with a fast forward-backward method to compute the minimum-time speed profile. Compared to existing neural networks, PathPoly-NN generalizes better with small training sets, and it has better accuracy in approximati...

In the context of vehicle trajectory planning, motion primitives are trajectories connecting pairs of boundary conditions. In autonomous racing, motion primitives have been used as computationally faster alternatives to model predictive control, for online obstacle avoidance. However, the existing motion primitive formulations are either simplified and suboptimal, or computationally expensive for accurate collision avoidance. This paper introduces new motion primitives for autonomous racing, aiming to accurately approximate the minimum-time vehicle trajectories while ensuring computational efficiency. We present a novel neural network, named PathPoly-NN, whose internal architecture is designed to learn the minimum-time vehicle path. Our motion primitives combine PathPoly-NN with a fast forward-backward method to compute the minimum-time speed profile. Compared to existing neural networks, PathPoly-NN generalizes better with small training sets, and it has better accuracy in approximating the minimum-time path. Additionally, our motion primitives have lower computational burden and higher accuracy than existing methods based on cubic polynomials and G2 clothoid curves. Finally, the motion primitives of this paper achieve similar maneuver times as minimum-time economic nonlinear model predictive control (E-NMPC), but with significantly lower computational load (two orders of magnitude). The results open promising perspectives of applications in graph-based trajectory planners for autonomous racing.

Computationally Efficient Minimum-Time Motion Primitives for Vehicle Trajectory Planning / Piccinini, Mattia; Gottschalk, Simon; Gerdts, Matthias; Biral, Francesco. - In: IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS. - ISSN 2687-7813. - ELETTRONICO. - 5:(2024), pp. 642-655. [10.1109/OJITS.2024.3476540]

Computationally Efficient Minimum-Time Motion Primitives for Vehicle Trajectory Planning

Mattia Piccinini
;
Matthias Gerdts;Francesco Biral
2024-01-01

Abstract

In the context of vehicle trajectory planning, motion primitives are trajectories connecting pairs of boundary conditions. In autonomous racing, motion primitives have been used as computationally faster alternatives to model predictive control, for online obstacle avoidance. However, the existing motion primitive formulations are either simplified and suboptimal, or computationally expensive for accurate collision avoidance. This paper introduces new motion primitives for autonomous racing, aiming to accurately approximate the minimum-time vehicle trajectories while ensuring computational efficiency. We present a novel neural network, named PathPoly-NN, whose internal architecture is designed to learn the minimum-time vehicle path. Our motion primitives combine PathPoly-NN with a fast forward-backward method to compute the minimum-time speed profile. Compared to existing neural networks, PathPoly-NN generalizes better with small training sets, and it has better accuracy in approximati...
2024
Piccinini, Mattia; Gottschalk, Simon; Gerdts, Matthias; Biral, Francesco
Computationally Efficient Minimum-Time Motion Primitives for Vehicle Trajectory Planning / Piccinini, Mattia; Gottschalk, Simon; Gerdts, Matthias; Biral, Francesco. - In: IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS. - ISSN 2687-7813. - ELETTRONICO. - 5:(2024), pp. 642-655. [10.1109/OJITS.2024.3476540]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/442961
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
  • OpenAlex ND
social impact