A mixed quasi-étale quotient is the quotient of the product of a curve of genus at least 2 with itself by the action of a group which exchanges the two factors and acts freely outside a finite subset. A mixed quasi-étale surface is the minimal resolution of its singularities. We produce an algorithm computing all mixed quasi-étale surfaces with given geometric genus, irregularity and self-intersection of the canonical class. We prove that all irregular mixed quasi-étale surfaces of general type are minimal. As an application, we classify all irregular mixed quasi-étale surfaces of general type with genus equal to the irregularity, and all the regular ones with K^2 > 0, thus constructing new examples of surfaces of general type with χ = 1. We mention the first example of a minimal surface of general type with p_g = q = 1 and Albanese fibre of genus bigger than K^2.

Mixed quasi étale quotients with arbitrary singularities

Pignatelli, Roberto
2015-01-01

Abstract

A mixed quasi-étale quotient is the quotient of the product of a curve of genus at least 2 with itself by the action of a group which exchanges the two factors and acts freely outside a finite subset. A mixed quasi-étale surface is the minimal resolution of its singularities. We produce an algorithm computing all mixed quasi-étale surfaces with given geometric genus, irregularity and self-intersection of the canonical class. We prove that all irregular mixed quasi-étale surfaces of general type are minimal. As an application, we classify all irregular mixed quasi-étale surfaces of general type with genus equal to the irregularity, and all the regular ones with K^2 > 0, thus constructing new examples of surfaces of general type with χ = 1. We mention the first example of a minimal surface of general type with p_g = q = 1 and Albanese fibre of genus bigger than K^2.
2015
1
D., Frapporti; Pignatelli, Roberto
File in questo prodotto:
File Dimensione Formato  
Mixed.magma

accesso aperto

Descrizione: script usato per ottenere i risultati dell'articolo, gira col software MAGMA
Tipologia: Altro materiale allegato (Other attachments)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 39.24 kB
Formato Text
39.24 kB Text Visualizza/Apri
Appendix.pdf

accesso aperto

Descrizione: Appendix A
Tipologia: Altro materiale allegato (Other attachments)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 76.03 kB
Formato Adobe PDF
76.03 kB Adobe PDF Visualizza/Apri
Appendix B.pdf

accesso aperto

Descrizione: Appendix B
Tipologia: Altro materiale allegato (Other attachments)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 108.09 kB
Formato Adobe PDF
108.09 kB Adobe PDF Visualizza/Apri
PostPrint.pdf

accesso aperto

Descrizione: Post-Print
Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 221.41 kB
Formato Adobe PDF
221.41 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/68189
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
  • OpenAlex ND
social impact