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Abstract. A mixed quasi-étale quotient is the quotient of the product
of a curve of genus at least 2 with itself by the action of a group which
exchanges the two factors and acts freely outside a finite subset. A
mixed quasi-étale surface is the minimal resolution of its singularities.

We produce an algorithm computing all mixed quasi-étale surfaces
with given geometric genus, irregularity, and self-intersection of the
canonical class. We prove that all irregular mixed quasi-étale surfaces
of general type are minimal.

As an application, we classify all irregular mixed quasi étale surfaces
of general type with genus equal to the irregularity, and all the regular
ones with K2 > 0, thus constructing new examples of surfaces of general
type with χ = 1. We mention the first example of a minimal surface of
general type with pg = q = 1 and Albanese fibre of genus bigger than
K2.

Introduction

In the last decade, after the seminal paper [Cat00], there has been growing
interest in those surfaces birational to the quotient of the product of two
curves of genus at least 2 by the action of a subgroup of its automorphism
group.

These have shown to be a very productive source of examples, especially
in the very interesting and still mysterious case of the surfaces of general
type with χ(S) = 1 (equivalently pg(S) = q(S)). Here and in the following
we use the standard notation of the theory of the complex surfaces, as in
[Bea78, BHPV04]. For motivation and for the state of the art (few years ago)
of the research on the surfaces of general type with pg = q = 0 we suggest to
the reader the survey [BCP11], while some information on the more general
case χ(S) = 1 can be found in [BCP06, Section 2]. We just mention here that
the case pg = q ≥ 3 has been classified ([Bea82, CCML98, Pir02, HP02]),
whereas the case pg = q ≤ 2 is still rather unknown.

Recently several new surfaces of general type with pg = q have been
constructed as the quotient of a product of two curves by the action of a
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finite group; see [BC04, BCG08, BCGP12, BP12, BP13] for pg = 0, [CP09,
Pol08, Pol09, MP10] for pg = 1, [Pen11, Zuc03] for pg = 2. In all these
articles the authors assume either that the action is free, or unmixed, which
means that the action is diagonal, induced by actions on the factors.

In [Fra11] the first author considered a more general case, assuming the
action to be free outside a finite set of points: it is not difficult to show that
this includes both the cases above. We call this case quasi-étale since the
induced map into the quotient is quasi-étale in the sense of [Cat07]. Since the
above mentioned papers give a satisfactory description of the unmixed case,
[Fra11] concentrated on the mixed case, which is the complementary case.
After some preliminary results, [Fra11] restricted to the case of surfaces of
general type with pg = 0, and imposed a strong condition on the singularities
of the quotient surface, obtaining several interesting new examples.

In this paper we drop any assumption on the value of pg and the type of
singularities.

The situation is the following. Let C be a Riemann surface of genus
g(C) ≥ 2, and let G be a finite group that acts on C × C. We say that
X = (C × C)/G is a quasi-étale quotient if the action of G is free outside a
finite set of points. Let S → X be the minimal resolution of the singularities
of X, we call S a quasi-étale surface. The action is mixed if G ⊂ Aut(C ×
C) ∼= Aut(C)2 ⋊ Z2 is not contained in Aut(C)2; if the action is mixed we
say that X is a mixed q.e. quotient, S is a mixed q.e. surface and we denote
by G0 ◁ G the subgroup G ∩Aut(C)2.

The main result of this paper is an algorithm which given three fixed
integers pg, q and K

2, produces all mixed q.e. surfaces with those invariants.
We implemented the algorithm in the program MAGMA [MAG]; the script
is available from

http://www.science.unitn.it/~pignatel/papers/Mixed.magma

As an application, running the program for all possible positive values
of K2 and pg = q, we obtained the following theorems A, B and C. Note
that the program also works for arbitrary values of K2, pg and q, so more
surfaces may be produced with it.

Theorem A. The mixed q.e. surfaces S with pg = q = 0 and K2 > 0 form
the 17 irreducible families collected in Table 1. In all cases S is minimal
and of general type.

In Table 1, every row corresponds to an irreducible family. Two columns
need some explanation: the column B(X) represents the basket of singu-
larities of X (see Definition 2.15), the column Sign. gives the signature of
the generating vector of G0 (see Definition 1.5) in a compact way, e.g. 23, 4
stands for (q; 2, 2, 2, 4). Throughout the paper we denote by Zn the cyclic
group of order n, by Sn the symmetric group on n letters, by An the alter-
nating group on n letters, byQ8 the group of quaternions, byDn the dihedral
group of order 2n, by Dp,q,r the group ⟨x, y | xp = yq = 1, xyx−1 = yr⟩, by
BDn the group ⟨x, y | y2n = x2yn = 1, xyx−1 = y−1⟩ and by G(a,b) the bth

group of order a in the MAGMA database of finite group.
Note that the 13 rows of this list where the mixed q.e. quotient has only

Rational Double Points as singularities were already in [Fra11], so only 4

http://www.science.unitn.it/~pignatel/papers/Mixed.magma
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K2
S B(X) Sign. G0 G H1(S,Z) π1(S)

1 2C2,1, 2D2,1 23 , 4 D4 × Z2 Z3
2 ⋊ Z4 Z4 Z4

2 6C2,1 25 Z3
2 Z2

2 ⋊ Z4 Z2 × Z4 Z2 × Z4

2 6C2,1 43 (Z2 × Z4)⋊ Z4 G(64,82) Z3
2 Z3

2

2 C2,1, 2D2,1 23 , 4 Z4
2 ⋊ Z2 Z4

2 ⋊ Z4 Z4 Z4

2 C2,1, 2D2,1 22 , 32 Z2
3 ⋊ Z2 Z2

3 ⋊ Z4 Z3 Z3

2 2C4,1, 3C2,1 23 , 4 G(64,73) G(128,1535) Z3
2 Z3

2

2 2C3,1, 2C3,2 32 , 4 G(384,4) G(768,1083540) Z4 Z4

2 2C3,1, 2C3,2 32 , 4 G(384,4) G(768,1083541) Z2
2 Z2

2

3 C8,3, C8,5 23 , 8 G(32, 39) G(64, 42) Z2 × Z4 Z2 × Z4

4 4C2,1 25 D4 × Z2 D2,8,5 ⋊ Z2 Z2 × Z8 Z2
2 ⋊ Z8

4 4C2,1 25 Z4
2 (Z2

2 ⋊ Z4)× Z2 Z3
2 × Z4 ∞

4 4C2,1 43 G(64, 23) G(128, 836) Z3
2 Z2

4 ⋊ Z2

8 ∅ 25 D4 × Z2
2 (D2,8,5 ⋊ Z2)× Z2 Z3

2 × Z8 ∞
8 ∅ 43 G(128, 36) G(256, 3678) Z3

4 ∞
8 ∅ 43 G(128, 36) G(256, 3678) Z4

2 × Z4 ∞
8 ∅ 43 G(128, 36) G(256, 3678) Z2

2 × Z2
4 ∞

8 ∅ 43 G(128, 36) G(256, 3679) Z2
2 × Z2

4 ∞
Table 1. Mixed q.e. surfaces of general type with K2 > 0
and pg = q = 0

of these surfaces are new: three with K2 = 2 and one with K2 = 3. Note
moreover that some of these surfaces have the same invariants of some of
the surfaces in [BP12], including the fundamental group (see, e.g., the case
K2 = 4). We do not know if two such surfaces are deformation equivalent
or not: it would be interesting to study their moduli spaces.

There may exist more mixed q.e. surfaces of general type with pg = q =
0: they would have K2 ≤ 0 and therefore they would not be minimal.
The strategy (and the program) works in principle for every value of K2.
Unfortunately, if it seems to work in the caseK2 = 0 (we have not completed
the computations), the case when K2 is negative seems to be too hard for
our program: indeed we tried on the best computers at our disposal, but it
ran out of memory very quickly.

In the irregular (q > 0) case, the situation is, from this point of view,
much more clear since we could prove the following Theorem (4.5).

Theorem. Let S be an irregular mixed q.e. surface of general type, then S
is minimal.

The result does not extend to the unmixed case, counterexamples can be
found in [MP10]. Then we could give a complete classification of the mixed
q.e. irregular surfaces of general type with pg = q.

Theorem B. The mixed q.e. surfaces of general type S with pg = q = 1
form the 19 irreducible families collected in Table 2.

In Table 2 we use the same notation of the previous Table 1; we also report
the genus galb of a general fibre of the Albanese map, and we do not report
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K2
S galb B(X) Sign. G0 G H1(S,Z)

2 2 C2,1, 2D2,1 22 Z2 Z4 Z2

2 2 C2,1, 2D2,1 2 D8 D2,8,3 Z2

2 2 C2,1, 2D2,1 2 Q8 BD4 Z2

4 3 4C2,1 22 Z4 Z8 Z2 × Z2

4 3 4C2,1 22 Z2 × Z2 Z2 × Z4 Z2 × Z2

4 2 4C2,1 2 Z2
2 ⋊ Z4 G(32,29) Z2

2 × Z2

4 3 4C2,1 2 D4,4,3 D4,8,3 Z2 × Z2

4 3 4C2,1 2 D4,4,3 D4,8,7 Z2 × Z2

4 2 4C2,1 2 D4,4,3 G(32,32) Z2
2 × Z2

4 2 4C2,1 2 D4,4,3 G(32,35) Z2
2 × Z2

4 3 4C2,1 2 D2,8,5 G(32,15) Z2 × Z2

5 3 C3,1, C3,2 3 BD3 BD6 Z2 × Z2

5 3 C3,1, C3,2 3 D6 D2,12,5 Z2
2 × Z2

6 3 2C2,1 2 A4 × Z2 G(48,30) Z2 × Z2

6 7 2C2,1 2 A4 × Z2 A4 × Z4 Z2 × Z2

6 5 C5,3 5 D5 G(20,3) Z2 × Z2

8 5 ∅ 22 Z2 × Z4 D2,8,5 Z4 × Z2

8 5 ∅ 22 D4 D2,8,3 Z4 × Z2

8 5 ∅ 22 Z3
2 Z2

2 ⋊ Z4 Z3
2 × Z2

Table 2. Mixed q.e. surfaces of general type with pg = q = 1

π1(S), which is always infinite. Note that there is a surface with K2
S = 6 and

galg = 7; to the best of our knowledge, this is the first example of a minimal
surface of general type with pg = q = 1 and galb > K2

S ; we recall that this
is not possible for K2

S ≤ 3 by the classification [Cat10, CC91, CC93, CP06].
We also note the first example with K2 = 6 and galb = 5. Also the other
examples with 4 ≤ K2 ≤ 6 may be, to the best of our knowledge, new,
although other surfaces with those invariants have been already constructed
(see [Pig09, Pol09, MP10, Rit07, Rit10a, Rit10b]).

Theorem C. There exists a unique irreducible family of mixed q.e. surfaces
of general type with pg = q ≥ 2, and it has pg = 2 and K2 = 8, see Table 3.

K2
S B(X) Sign. G0 G H1(S,Z)

8 ∅ - Z2 Z4 Z2 × Z4

Table 3. Mixed q.e. surfaces of general type with pg = q = 2

The mixed q.e. surfaces with K2
S = 8χ(S) are those for which the action

is free; indeed all the examples in Tables 1, 2 and 3 appeared in the papers
cited at the beginning of this introduction. In particular, the list in [Pen11]
is the complete list of all the q.e. surfaces with pg = q = 2.

An expanded version of these tables can be downloaded from:

http://www.science.unitn.it/~pignatel/papers/TablesMixed.pdf

The paper is organized as follows.

http://www.science.unitn.it/~pignatel/papers/TablesMixed.pdf
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In Section 1 we give the algebraic recipe which, using Riemann’s Existence
Theorem, constructs mixed q.e. surfaces.

In Section 2 we give a complete description of the analytic type of the
possible singularities of X. We show moreover how to compute the number
of singular points of X and the analytic type of each singularity directly
by the ingredients of the algebraic recipe above, and we give formulas for
K2
S , pg(S) and q(S). We think it is worth mentioning here an unexpected

consequence of those formulas (Corollary 2.20): the number of branch points
of the double cover (C × C)/G0 → (C × C)/G is even and bounded above
by 2(pg(S) + 1).

Section 3 is devoted to the Albanese map of a mixed q.e. surface with
q = 1. The main result is a formula to compute the genus of its general
fibre.

In Section 4 we show that all irregular mixed q.e. surfaces are minimal. In
the regular case, we prove it under a strong assumption on the singularities
of X (Proposition 4.9).

Finally, in Section 5, we present our algorithm to construct all mixed
quasi-étale surfaces with given values of K2, pg and q, and prove Theorems
A, B and C.

Acknowledgments: We are indebted to M. Penegini for his careful read-
ing of a first version of this manuscript; in particular the current forms of
Proposition 2.21 and Corollary 2.20 are due to him, we had proven only a
weaker inequality. We are grateful to I. Bauer and F. Catanese for several
inspiring conversations on group actions on the products of two curves.

1. The algebraic recipe

Throughout this paper we will denote by C a Riemann surface of genus
g ≥ 2 and by G a finite subgroup of Aut(C×C) whose action is free outside
a finite subset and mixed, which means that there are elements in G which
exchange the two natural isotrivial fibrations of C × C. We will denote by
G0 the index 2 subgroup consisting of those elements that do not exchange
the factors.

We will say that the quotient surface X = (C × C)/G is a mixed q.e.
quotient. We will denote by ρ : S → X the minimal resolution of the singu-
larities of X, and we say that S is a mixed q.e. surface.

Remark 1.1. By [Fra11, Remark 2.3] every mixed q.e. quotient is induced
by a unique minimal action, which means that G0 acts faithfully on both
factors: therefore in this paper we will only consider minimal actions. If X
is a mixed q.e. surface, then the quotient map factors as follows:

C × C
σ−→ Y := (C × C)/G0 π−→ X.

[Cat00, Proposition 3.16] gives the following description of minimal mixed
actions:

Theorem 1.2. Let G ⊆ Aut(C × C) be a minimal mixed action. Fix τ ′ ∈
G\G0; it determines an element τ := τ ′2 ∈ G0 and an element φ ∈ Aut(G0)
defined by φ(h) := τ ′hτ ′−1. Then, up to a coordinate change, G acts as
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follows:

g(x, y) = (gx, φ(g)y)

τ ′g(x, y) = (φ(g)y, τg x)
for g ∈ G0(1.1)

Conversely, for every G0 ⊆ Aut(C) and G extension of degree 2 of G0,
fixed τ ′ ∈ G \ G0 and τ and φ defined as above, (1.1) defines a minimal
mixed action on C × C.

We recall the following results:

Theorem 1.3 ([Fra11, Theorem 2.6]). Let X be a quotient surface of mixed
type provided by a minimal mixed action of G on C ×C. The quotient map
C × C → X is quasi-étale if and only if the exact sequence

(1.2) 1 −→ G0 −→ G −→ Z2 −→ 1

does not split.
Moreover, if the quotient map is quasi-étale, then Sing(X) = π(Sing(Y )).

Lemma 1.4 ([Fra11, Lemma 2.9]). Let S → X = (C × C)/G be a mixed
q.e. surface. Then q(S) equals the genus of C ′ := C/G0.

The study of varieties birational to a quotient of a product of curves is
strictly connected with the study of Galois coverings of Riemann surfaces.
Now we collect some results that allow us to shift from the geometrical setup
to the algebraic one and viceversa.

Definition 1.5. Let H be a finite group and let

g ≥ 0 and m1, . . . ,mr > 1

be integers. A generating vector for H of signature (g;m1, . . . ,mr) is a
(2g + r)-tuple of elements of H:

V := (d1, e1, . . . , dg, eg;h1, . . . , hr)

such that V generates H,
∏g
i=1[di, ei] · h1 · h2 · · ·hr = 1 and there exists a

permutation σ ∈ Sr such that ord(hi) = mσ(i) for i = 1, . . . , r. In this case,
we also say that H is (g;m1, . . . ,mr)-generated.

By Riemann’s Existence Theorem (see [BCP11]), any curve C of genus g
together with an action of a finite group H on it, such that C/H is a curve
C ′ of genus g′, is determined (modulo automorphisms) by the following data:

(1) the branch point set {p1, . . . , pr} ⊂ C ′;
(2) loops α1, . . . , αg′ , β1, . . . , βg′ , γ1, . . . , γr ∈ π1(C

′\{p1, . . . , pr}), where
{αi, βi}i generates π1(C ′), each γi is a simple geometric loop around

pi and
∏g′

i=1[αi, βi] · γ1 · . . . · γr = 1 ;
(3) a generating vector forH of signature (g′;m1, . . . ,mr) with the prop-

erty that Hurwitz’s formula holds:

(1.3) 2g − 2 = |H|
(
2g′ − 2 +

r∑
i=1

mi − 1

mi

)
.
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Remark 1.6. Analogously, a mixed q.e. quotient X = (C×C)/G determines
a finite group G0, a degree 2 extension 1 → G0 → G → Z2 → 1, the
curve C ′ = C/G0, a set of points {p1, . . . , pr} ⊂ C ′, and, for every choice of
αi, βj , γk ∈ π1(C

′ \ {p1, . . . , pr}) as in (2), a generating vector V for G0.
Conversely, the following algebraic data:

• a finite group G0;
• a curve C ′;
• points p1, . . . , pr ∈ C ′, and αi, βj , γk ∈ π1(C

′ \{p1, . . . , pr}) as in (2);
• integers m1, . . . ,mr > 1;
• a generating vector V for G0 of signature (g(C ′);m1, . . . ,mr);
• a degree 2 extension 1 → G0 → G→ Z2 → 1 which does not split;

give a uniquely determined mixed q.e. quotient. Indeed by Riemann’s Ex-
istence Theorem the first 5 data give the Galois cover c : C → C/G0 ∼= C ′

branched over {p1, . . . , pr}. The last datum determines, by Theorem 1.2,
a minimal mixed action on C × C and by Theorem 1.3 the action is free
outside a finite set of points.

If V := (d1, e1, . . . , dg, eg;h1, . . . , hr) we will denote by Ki the cyclic sub-
group of G0 generated by hi.

2. The singularities of a mixed q.e. quotient

This section is devoted to the study of the singularities of a mixed q.e.
quotientX = (C×C)/G. We will need to consider the intermediate quotient
Y = (C × C)/G0, and the two isotrivial fibrations αi : Y → C ′ = C/G0

induced by the projections of C × C on the two factors.
The double cover π : Y → X determines an involution ι : Y → Y such

that X = Y/ι. By the last statement of Theorem 1.3, the fixed points of ι
are singularities of Y , hence ι splits the singularities of X in two classes: the
singularities not in the branch locus of π (analytically isomorphic to each of
its preimages in Y ), and the images of the fixed points of ι. We need then
to consider the singularities of Y and the action of ι on them.
Y is a product-quotient surface, whose singularities are now well under-

stood (see [BP12, MP10, Pol10]). They are cyclic quotient singularities,
isomorphic to the quotient C2/⟨σ⟩, where σ is the diagonal linear auto-
morphism with eigenvalues exp(2πin ) and exp(2πian ) with n > a > 0 and
gcd(a, n) = 1. We will say that this is a singularity of type Cn,a. Two singu-
larities of respective types Cn,a and Cn′,a′ are locally analytically isomorphic
if and only if n = n′ and either a = a′ or aa′ ≡ 1 mod n. We read from
[BP12] how to determine the singular points of Y and their respective n and
a.

Proposition 2.1 ([BP12, Propositions 1.16 and 1.18]). Let X be a mixed
q.e. quotient given by data as in Remark 1.6, let Y = (C × C)/G0 be the
intermediate product-quotient surface, and consider the induced map Q =
(α1, α2) : Y → C ′ × C ′. The singular points of Y are the points y = σ(u, v)
such that

StabG0(u) ∩ φ−1(StabG0(v)) ̸= {1} ,
where φ is the automorphism of G0 in Theorem 1.2. In particular, if y ∈
Sing(Y ) then Q(y) = (pi, pj) for some i, j. Now fix i, j ∈ {1, . . . , r}, then
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i) there is a G0-equivariant bijection (Q ◦ σ)−1(pi, pj) → G0/Ki ×
G0/Kj, where the action on the target is g(aKi, bKj) = (gaKi, φ(g)bKj);

ii) there is a Ki-equivariant bijection between the orbits of the above
G0-action on G0/Ki × G0/Kj with the orbits of the Ki-action on
{1} ×G0/Kj.

iii) An element [g] ∈ {1}×G0/Kj corresponds to a point of type Cn,a on
Y , where n = |Ki∩φ−1(gKjg

−1)|, and a is given as follows: let δi be
the minimal positive integer such that there exists 1 ≤ γj ≤ ord(hj)

with hδii = gφ−1(h
γj
j )g−1. Then a =

nγj
ord(hj)

.

By Proposition 2.1 we can compute the singularities of Y from the alge-
braic data of Remark 1.6. In order to compute the basket of singularities of
X, we first need to know which of them are ramification points for π.

Lemma 2.2 ([Fra11, Proposition 3.8]). Let y ∈ Y be a fixed point for ι.
Then Q(y) = (pi, pi) for some i. In other words, Q maps all fixed points of
ι to the diagonal of C ′ × C ′.

Proposition 2.3. An element [g] ∈ {1} × G0/Ki corresponds to a fixed
point for ι if and only if there exists an element h ∈ G0 such that:{

φ(h)τh ∈ Ki

φ(h)g ∈ Ki

Proof. The point (Ki, gKi) corresponding to [g] is a ramification point for
π if and only if there exists an element τ ′h ∈ G \G0 such that (Ki, gKi) =
τ ′h(Ki, gKi) = (φ(h)gKi, τhKi), that is{

φ(h)gKi = Ki

gKi = τhKi
⇐⇒

{
φ(h)gKi = Ki

φ(h)τhKi = (τ ′h)2Ki = Ki

□

We study now the action of ι on a neighbourhood of a singular point of
Y . We denote by λ : T → Y the minimal resolution of the singularities of
Y . The exceptional divisor E of the minimal resolution of a cyclic quotient

singularities of type Cn,a is a Hirzebruch-Jung string, that is E =
∑l

i=1Ei,
where the Ei are smooth rational curves with Ei.Ei+1 = 1, Ei.Ej = 0 for
|i− j| ≥ 2, and E2

i = −bi where the bi are the coefficients of the continued
fraction of na :

n

a
= b1 −

1

b2 − 1
b3−...

=: [b1, . . . , bl] .

Remark 2.4. a · a′ ≡ 1 mod n if and only if the continued fraction of n
a′ is

[bl, . . . , b1].

We need the following

Lemma 2.5. The involution ι on Y lifts to a morphism µ : T → T .

Proof. Consider µ := λ−1 ◦ ι ◦ λ : T 99K T . Let Γ ⊂ T × T be the graph of
µ; let f1, f2 : Γ → T be the projections on the factors.
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If µ is not defined at a point p ∈ T , then Γ contains a (−1)-curve C
contracted to p by f1. D := f2(C) ⊂ T is a curve contracted to ι(λ(p)) by
λ, so a component of a H-J string: in particular D2 ≤ −2. On the other
hand, since f2 is a birational morphism, D2 ≥ C2 = −1, a contradiction. □

To study the action of µ on the H-J strings, we will need the following

Proposition 2.6 (see [Ser96, Theorem 2.1]). Let y ∈ Y be a singular
point of type Cn,a, and consider the two fibres F1 := α∗

1(α1(y)) and F2 :=

α∗
2(α2(y)) taken with the reduced structure. Let F̃i := λ−1

∗ (Fi) be the strict
transforms of Fi (i = 1, 2) and let E be the exceptional divisor of y.

Then F̃1 intersects one of the extremal curves of E, say E1, while F̃2

intersects the other extremal curve, say El.

Proposition 2.6 motivates the following

Definition 2.7. Let α : Y → C ′ be one of the two natural fibrations. Let
y ∈ Sing(Y ) be a point of type Cn,a. Let E :=

∑l
i=1Ei be the exceptional

divisor over y, where the Ei are rational curves ordered so that E2
i = −bi,

Ei.Ei+1 = 1. Let F̃ be the strict transform in T of the fibre F = α∗(α(y))
taken with the reduced structure.
We say that y is of type Cn,a with respect to α if F̃ intersects E1.

Remark 2.8. If y is of type Cn,a with respect to α1 then y is of type Cn,a′
with respect to α2, with a · a′ ∼= 1 mod n.

Lemma 2.9. If y is a point of type Cn,a with respect to α1, then ι(y) is a
point of type Cn,a′ with respect to α1, with a · a′ ∼= 1 mod n.

Proof. Since ι is an isomorphism, y and z := ι(y) have the same analytic
type, so z is either of type Cn,a or of type Cn,a′ with respect to α1.

Let Yi, resp. Zi be the fibre of αi containing y, resp. z, all of them
taken with the reduced structure and let Ỹi := λ−1

∗ (Yi) and Z̃i := λ−1
∗ (Zi)

(i = 1, 2) be their strict transforms in T . Note that ι is the map induced on
Y by the action on C × C of any τ ′ ∈ G \ G0. Since τ ′ exchanges the two

factors, then ι(Y1) = Z2 and therefore µ(Ỹ1) = Z̃2.

Let E =
∑l

i=1Ei resp. E′ =
∑l

i=1E
′
i be the exceptional divisor of y

resp. z, with the Ei resp. E
′
i ordered as in Definition 2.7 for α = α1. By

assumption Ỹ1 intersects E1, Z̃1 intersects E′
1, Z̃2 intersects E′

l.

Since µ(Ỹ1) = Z̃2, then µ(E1) = E′
l. It follows that z is of type Cn,a with

respect to α2 and of type Cn,a′ with respect to α1. □
We give now a full description of the singular points of X arising from

fixed points of ι.

Proposition 2.10. Let X = (C × C)/G be a mixed q.e. quotient and let
y ∈ Y be a fixed point of ι. Then y is a singularity of type Cn,a with a2 ≡ 1

mod n; so a = a′and the continued fraction
n

a
= [b1, . . . , bl] is palindromic:

bi = bl+1−i ∀i.
Moreover

(i) n is even;
(ii) l is odd: l = 2m+ 1 and bm+1 is even;
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(iii) the exceptional divisor of the minimal resolution of the singular point
π(y) is a tree of m + 3 smooth rational curves with decorated dual
graph:

b b b b

b

b

−b1 −b2 −bm
−bm+1

2 − 1

−2

−2

Proof. By Lemma 2.9 y is of type Cn,a with respect to both αj , so a = a′

and bi = bl+1−i. More precisely, the proof of Lemma 2.9 shows that, if

E =
∑l

1Ei is the H-J string of y, µ(Ei) = El+1−i.
(i) If y = σ(u, v), |StabG0(u, v)| = n and |StabG(u, v)| = 2n. If n is odd,

then by Sylow’s theorem there exists an element g of order 2 in StabG(u, v)\
StabG0(u, v), splitting the exact sequence (1.2), a contradiction.

(ii) Let D =
∑l

i=1Di := λ−1(y), and assume that l = 2m is even. The
involution µ exchanges Di with Dl+1−i, hence p = Dm∩Dm+1 is the unique
point of D fixed by µ. dµp exchanges the directions of the tangent spaces
of Dm and Dm+1 and therefore it is not a multiple of the identity. Since it

is an involution, then up to a linear coordinate change dµp =

(
−1 0

0 1

)
,

which implies that the fixed locus of µ contains a curve through p in the
direction of the eigenspace with eigenvalue 1, a contradiction. We delay the
proof that bm+1 is even.

(iii) By part (ii), l = 2m + 1 and all fixed points of µ in D belong to
Dm+1 = µ(Dm+1). The restriction of µ to Dm+1 is an involution and there-
fore by Hurwitz’s formula it fixes exactly two points p1 and p2, that are
distinct from the points of intersection of Dm+1 with Dm or Dm+2.

Let V be a small µ-invariant open set of T containing D and not in-
tersecting any other exceptional divisor, so that λ(V ) is an open set of Y
containing only one singular point: y. Let ϵ : V ′ → V be the blow-up in p1
and p2, we denote by D′

i the strict transform of Di and by A1 and A2 the
two (−1)-exceptional curves. The involution µ lifts to an involution µ′ on
V ′ whose fixed locus is the smooth curve A1 ∪A2.

Then V ′/µ′ is smooth, and therefore is a resolution of the singular point
π(x) whose exceptional divisor isD/µ. The computation of the dual graph of
D/µ is a standard computation that we leave to the reader. We notice that
there is no curve with self-intersection −1, so the resolution is the minimal
resolution. Moreover there is a curve of self-intersection −(1 + bm+1/2),
showing that bm+1 is even. □

It follows that the analytic type of a singularity on X only depends on
its preimage on Y . Indeed, these quotient singularities can be described as
follows:
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Proposition 2.11. Let X = (C × C)/G be a mixed q.e. quotient and let

y ∈ Sing(Y ) be a point of type Cn,a with
n

a
= [b1, . . . , bm, 2b, bm, . . . , b1]. Let

p

q
:= [b1, . . . , bm] , and ξ := bp− q .

If y is a ramification point for π, then x := π(y) is a quotient singularity
isomorphic to C2/H with:

• if ξ = 0 (i.e. p = 0), then

H =

⟨(
ϵ 0

0 ϵn+1

)⟩
, with ϵ = e

2πi
2n ,

• if ξ ̸= 0 and odd, then

H =

⟨(
η 0

0 η

)
,

(
ω 0

0 ω−1

)
,

(
0 1

−1 0

)⟩
, with η = e

2πi
2ξ , ω = e

2πi
2p ,

• if ξ ̸= 0 and even, then

H =

⟨(
0 ζ

−ζ 0

)
,

(
ω 0

0 ω−1

)⟩
, with ζ = e

2πi
4ξ and ω = e

2πi
2p .

Proof. The statement follows immediately from the classification of finite
subgroups of GL(2,C) without quasi-reflections, see [Bri68, Satz 2.11] or
[Mat02, Theorem 4.6.20]. □

Definition 2.12. We say that a singular point x as in Proposition 2.11 is
a singular point of type Dn,a.

Remark 2.13.

(1) A singular point of type Dn,a is a Rational Double Point if and only
if a = n− 1, in which case we have a Rational Double Point of type
Dn

2
+2 (if n = 2, this is more commonly known as A3).

(2) A singular point of type Dn,a is a cyclic quotient singularity if and
only if a = 1. More precisely singularities of typeDn,1 are isomorphic
to singularities of type C2n,n+1. We will distinguish between them
keeping track of the branching locus of π.

(3) We noted that a point of type Cn,a is also a point of type Cn,a′ with
a′ = a−1 in Zn. We consider these different representations as equal
and usually we do not distinguish between them.

In the following the term multiset will be used in the sense of MAGMA
[MAG]. So a multiset is a set whose elements have a multiplicity: a positive
integer; the cardinality of a multiset takes into account the multiplicity of
its elements.

Definition 2.14. Let Y be an unmixed surface. Then we define the basket
of singularities of Y to be the multiset

B(Y ) :=
{
λ× Cn,a : Y has exactly λ singularities of type Cn,a

}
.
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Let X = (C × C)/G be a mixed q.e. quotient. We define the following
two multisets:

BC :=
{
η × Cn,a : X has exactly η singularities of type Cn,a

not in the branch locus of π
}
.

BD :=
{
ζ ×Dm,b : X has exactly ζ singularities of type Dm,b

in the branch locus of π
}
.

Definition 2.15. The basket of singularities of X is the multiset

B(X) = BC ∪ BD .

The following is an useful constraint on the basket of singularities.

Proposition 2.16. Let X = (C × C)/G be a mixed q.e. quotient. Let
B(X) = BC ∪BD be the basket of singularities of X with BC := {ηi×Cni,ai}i
and BD := {ζj ×Dmj ,bj}j. Then∑

i

ηi
ai + a′i
ni

+
∑
j

ζj
bj
mj

∈ Z .

Proof. If x ∈ X is a singular point of type Cn,a, then by Lemma 2.9 π−1(x)
is given by two singular points, one of type Cn,a with respect to α1 and
the other of type Cn,a′ with respect to α1. If x ∈ X is a singular point
of type Dm,b, then π

−1(x) is given by a unique singular point of type Cm,b
with respect to α1. The result now follows directly from [Pol10, Proposition
2.8]. □
Definition 2.17. Let x be a singular point of type Cn,a with

n
a := [b1, . . . , bl].

We define the following nonnegative rational numbers

i) kx = k(Cn,a) := −2 +
2 + a+ a′

n
+
∑l

i=1(bi − 2);

ii) ex = e(Cn,a) := l + 1− 1

n
≥ 0;

Let x be a singular point of type Dn,a with n
a := [b1, . . . , bm, 2b, bm, . . . , b1].

We define the analogous nonnegative rational numbers

i) kx = k(Dn,a) :=
k(Cn,a)

2 = −2 + a+1
n +

∑m
i=1(bi − 2) + b;

ii) ex = e(Dn,a) :=
e(Cn,a)

2 + 3 = m+ 4− 1

2n
;

In both cases we set Bx := 2ex + kx. Note that B(Dn,a) =
B(Cn,a)

2 + 6.
Let B be a basket of singularities. We use the following notation:

k(B) =
∑
x∈B

kx, e(B) =
∑
x∈B

ex, B(B) =
∑
x∈B

Bx .

These correction terms determine the invariants of S as follows:

Proposition 2.18. Let ρ : S → X = (C × C)/G be a mixed q.e. surface,
and let B be the basket of singularities of X. Then

(2.1) K2
S =

8(g − 1)2

|G|
− k(B) ;
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(2.2) e(S) =
4(g − 1)2

|G|
+ e(B) .

Proof. Since the quotient map C × C → X is quasi-étale, we get

K2
X =

K2
Y

2
=

8(g − 1)2

|G|
.

Let B = BC ∪ BD = {ηi × Cni,ai}i ∪ {ζj × Dnj ,aj}j , then the basket of
singularities of Y is B(Y ) = {2ηi×Cni,ai}i∪{ζj×Cnj ,aj}j , hence by definition
k(B(Y )) = 2k(B). By [BCGP12, Proposition 2.6], we get

K2
T =

8(g − 1)2

|G0|
− k(B(Y )) .

Let ϵ : T ′ → T be the blow-up of T in the 2d (d = |BD|) points fixed by µ:

(2.3) K2
T ′ = K2

T − 2d = K2
Y − k(B(Y ))− 2d = 2(K2

X − k(B)− d) .

By the proof of Proposition 2.10 we have a double cover π̃ : T ′ → S branched
over F := F1 + . . . + F2d, where the Fi are smooth rational curves with
F 2
i = −2 and and Fi.Fj = 0 if i ̸= j. Then numerically ([CD89, pages

13-14]) KT ′ equals π̃∗(KS + F/2) and, since KS .F = 0, it follows:

(2.4) K2
T ′ = 2

(
KS +

F

2

)2

= 2

(
K2
S +

−4d

4

)
= 2(K2

S − d) .

From equations (2.3) and (2.4), we get:

K2
S = K2

X − k(B) = 8(g − 1)2

|G|
− k(B) .

Let X0 := X \Sing(X) be the smooth locus of X; arguing as in [BCGP12]
we get:

e(S) = e(X0) +
∑
x∈BC

(lx + 1) +
∑
x∈BD

(mx + 4)

and

e(X0) =
e(C × C)

|G|
−
∑
x∈BC

1

nx
−
∑
x∈BD

1

2nx

It follows that

e(S) =
4(g − 1)2

|G|
+ e(B)

□

Using Noether’s formula and Proposition 2.18 we get:

Corollary 2.19. Let ρ : S → X = (C × C)/G be a mixed q.e. surface, and
let B be the basket of singularities of X. Then

K2
S = 8χ(S)− 1

3
B(B) .

We conclude this section by showing a very strong restriction on the
cardinality of BD.
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Corollary 2.20. Let ρ : S → X = (C ×C)/G be a mixed q.e. surface. The
cardinality d of BD is even and

d

2
≤ pg(S) + 1 .

Corollary 2.20 follows from the next proposition since the singular points
of X of type Dn,a are the branch points of π.

Proposition 2.21. Let ρ : S → X = (C×C)/G be a mixed q.e. surface and
let λ : T → Y be the minimal resolution of the singularities of Y . Let d be
the number of fixed points for ι, then

pg(S) ≤ pg(T ) = 2pg(S) + 1− d

2
.

Proof. Let ϵ : T ′ → T be the blow-up of T in the 2d points fixed by µ; we
have a double cover π̃ : T ′ → S branched along 2d smooth pairwise disjoint
rational curves. Pulling back the forms on S to forms on T ′ we note that
pg(S) ≤ pg(T

′) = pg(T ). Moreover e(T ′) = 2e(S)− 4d, e(T ) = e(T ′)− 2d =
2e(S)− 6d and K2

T = 2K2
S , by (2.3) and (2.4). By Noether’s formula:

χ(OT ) =
1

12
(K2

T + e(T )) =
1

12
(2K2

S + 2e(S)− 6d) = 2χ(OS)−
d

2

Since T → Y is a product-quotient surface, q(T ) = 2g(C/G0) = 2q(S) and

pg(T ) = 2 + 2pg(S)− 2q(S)− d

2
+ q(T )− 1 = 2pg(S) + 1− d

2
.

□

3. The Albanese fibre of a mixed q.e. surface with
irregularity 1

The Albanese map of a surface of general type S with irregularity 1 is
a fibration onto the elliptic curve Alb(S). The genus galb of the general
Albanese fibre is a deformation invariant, which is very important from the
point of view of the geography of surfaces of general type. In this section
we show how to compute galb for mixed q.e. surfaces.

Let S
ρ→ X = (C × C)/G be a mixed q.e. surface with q(S) = 1. By

Lemma 1.4, C ′ = C/G0 is an elliptic curve, so in this section we will set
E := C ′. We have the following commutative diagram:

(3.1) C × C
Q //

ς

��

E × E

ϵ
��

S
ρ //

α

))SSS
SSSS

SSSS
SSSS

SSSS
SSS

f ""E
EE

EE
EE

EE
X // E(2)

α̃
��

Alb(S)
ψ

// E

where α̃ is the Abel-Jacobi map. By the properties of the Albanese torus (see
[BHPV04, Proposition I.13.9]), the Stein factorization of α is given by the
Albanese map f : S → Alb(S) and a (unique) homomorphism ψ : Alb(S) →
E.
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The Galois cover c : C → E has branching set B := {p1, . . . , pr}; up to
translation we may assume that the neutral element 0 of E is not in B, and
that −pi /∈ B for each i ∈ {1, . . . , r}.

Let E′ := ϵ∗(α̃∗(0)) = {(x,−x) | x ∈ E} ∼= E, consider F ∗ := Q∗(E′)
and let F := α∗(0). Note that ρ(F ) = ς(F ∗). Our assumption −pi /∈ B
ensures that F ∗ and F are smooth, and the arithmetic genus of F can be
easily computed by Hurwitz’s Formula, see equation (3.4) below. F is the
disjoint union of degψ fibres of the Albanese map, so to compute galb we
need to compute degψ first.

We will need the points qi := (pi,−pi) and q′i := (−pi, pi) of E′; we set
B′ := {qi, q′i}i. We note that 0′ = (0, 0) ∈ E′ \B′.
By Remark 1.6, given suitable loops α, β, γ1, . . . , γr ∈ π1(E \ B, 0), the
cover c : C → E is determined by a generating vector (a, b;h1, . . . , hr) of G

0,
representing the monodromy map µ : π1(E \B, 0) → G0 of c.

Since Q = c × c, the monodromy map of the G0 × G0-cover Q is given
by two copies of µ. Q induces by restriction the G0 × G0-cover F ∗ → E′,
whose branching locus is B′. To describe its monodromy map we choose
generators δ, θ, γ′1, . . . , γ

′
r, γ

′′
1 , . . . , γ

′′
r ∈ π1(E

′ \B′, 0′) as follows:

• δ = (α,−α)
• θ = (β,−β)
• γ′i = (γi,−γi) are geometric loops around qi
• γ′′i = (−γi, γi) are geometric loops around q′i

Please note that we need some care in the choice of the loops α, β, γi to
ensure that δ, θ, γ′i and γ

′′
i do not meet B′.

Moreover, the class of δ, θ, γ′i and γ′′i in π1(E
′ \ B′, 0′) depends on the

choice of the loops α, β, γi and not only on their class in π1(E\B, 0). Anyway,
the classes of δ, θ, γ′i and γ

′′
i generate π1(E

′\B′, 0′) and the monodromy map

of Q|F ∗ : F ∗ → E′ is the unique homomorphism π1(E
′ \B′, 0′)

µ′−→ G0 ×G0

such that

(3.2)
δ

µ′7−→ (a, a−1) ,

γ′i
µ′7−→ (hi, 1) ,

θ
µ′7−→ (b, b−1) ,

γ′′i
µ′7−→ (1, hi) .

Remark 3.1. 1) We note that the index of Im(µ′) in G0 × G0 equals the
number of connected components of F ∗.

2) Fixed τ ′ ∈ G \ G0, let τ := τ ′2 ∈ G0 and φ ∈ Aut(G0) defined by
φ(h) := τ ′hτ ′−1. We define the following action of G on G0 ×G0:

g(h1, h2) = (gh1, φ(g)h2)

τ ′g(h1, h2) = (φ(g)h2, τg h1)
for g ∈ G0(3.3)

We define

M :=

∣∣∣∣∣∣
∪
g∈G

g Im(µ′)

∣∣∣∣∣∣ .
Lemma 3.2. Let S be a mixed q.e. surface with q(S) = 1. Then degψ =
|G0|2

M
.
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Proof. Let u ∈ E′. The action of G0 × G0 on Q−1(u) induces a bijection
between G0 × G0 and Q−1(u); two points of Q−1(u) belong to the same
connected component of F ∗ if and only if the corresponding elements in
G0 ×G0 differ by an element in Im(µ′).
Moreover, two points h, h′ ∈ F ∗ map to the same point of X if and only if
there exists g ∈ G such that g(h′) = h. So exactly M points of Q−1(u) are
mapped into each connected component of ς(F ∗). We conclude since degψ
equals the number of connected components of F . □

Proposition 3.3. Let S be a mixed q.e. surface with q(S) = 1, then

galb = 1 +
g(C)− 1

|G0|2
M .

Proof. Let us look at diagram (3.1). Since G0 is (1;m1, . . . ,mr)-generated,

then e(C) = −|G0|
r∑
i=1

(
mi − 1

mi

)
. The (G0 × G0)-cover Q is branched ex-

actly along the union of r “horizontal” copies of E and r “vertical” copies
of E; moreover for each i there are one horizontal copy and one vertical
copy with branching index mi. Since E′ is an elliptic curve that intersects
all these copies of E transversally in one point, by the Hurwitz’s formula
applied to F ∗ → E′ we obtain

(3.4) e(F ∗) = −|G0|2
r∑
i=1

2

(
mi − 1

mi

)
.

On the other hand, the G-cover ς is q.e. and we get

e(F ) =
e(F ∗)

|G|
= −|G0|

r∑
i=1

(
mi − 1

mi

)
= e(C) .

By Lemma 3.2, F is the disjoint union of degψ =
|G0|2

M
curves of genus

galb, and therefore

2− 2g(C) = e(F ) =
|G0|2

M
(2− 2galb) .

□

4. The minimal model

In this section we want to determine the minimal model of the surfaces
we construct. We start by recalling some useful results:

Lemma 4.1 ([Bom73, Proposition 1]). On a smooth surface S of general
type every irreducible curve C satisfies KS .C ≥ −1.

Lemma 4.2 ([BP12, Remark 4.3]). On a smooth surface S of general type
every irreducible curve C with KS .C ≤ 0 is smooth and rational.

Proposition 4.3. Let S be a smooth surface of general type. If E, C are
distinct smooth rational curves with E2 = −1, C2 ≥ −4, then C.E ≤ 1.
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Proof. Assume by contradiction C.E ≥ 2. Let b : S → S′ be the blow-
down given by the contraction of E and set C ′ := b(C). By the assumption
C.E ≥ 2, C ′ is singular, so by Lemma 4.2:

0 < KS′ .C ′ = (KS − E).(C + (C.E)E)

= (KS − E).C

= −C2 − 2−E.C ≤ 0,

a contradiction. □

Corollary 4.4. Let S be a smooth surface of general type. Assume that E
is a (−1)-curve in S, then E intersects at most one (−2)-curve.

Proof. Suppose E intersects two (−2)-curves. By Proposition 4.3 it inter-
sects each of the (−2)-curves transversally in a point. Then contracting E
we get two (−1)-curves intersecting in a point, which is not possible on a
surface of general type. □

The following is the main result of this section, showing that in the irreg-
ular case, the surfaces obtained are automatically minimal.

Theorem 4.5. Let S be an irregular mixed q.e. surface of general type, then
S is minimal.

Proof. Aiming for a contradiction, let E be a (−1)-curve on S.
Consider the intermediate quotient Y = (C×C)/G0, the minimal resolu-

tion of its singularities λ : T → Y and the involution µ on T (Lemma 2.5).
Let ϵ : T ′ → T be the blow up of the fixed points of µ. By Proposition 2.10
and its proof, there is a map π̃ : T ′ → S which is a double cover ramified
along the exceptional divisors of ϵ, so branched along a disjoint union of
(−2)-curves.
Since E can intersect at most one (−2)-curve then π̃∗(E) is union of two
rational curves; let R be one of them. By construction R is not exceptional
for the resolution T ′ → Y , and therefore one of the fibrations αi : Y → C ′ is
a surjective map from a rational curve to C ′, contradicting g(C ′) = q(S) >
0. □

In the case q = 0 we borrow an argument of [BP12]. Let Γ ⊂ X =

(C × C)/G be a rational curve. Let Γ′ := (π ◦ σ)∗(Γ) =
∑k

1 niΓi be the
decomposition in irreducible components of its pull back to C × C. We
observe that, since π◦σ is quasi-étale, ∀i ni = 1 and that G acts transitively
on the set {Γi | i = 1, . . . , k}. Hence there is a subgroup H ◁ G of index k
acting on Γ1 such that π(σ(Γ1)) = Γ1/H = Γ.
Normalizing Γ1 and Γ, we get the following commutative diagram:

Γ̃1
α //

f
��

Γ1
β //

��

C × C

��
P1 ν // Γ � � // X

Since each automorphism lifts to the normalization, H acts on Γ̃1 and f is
the quotient map Γ̃1 → Γ̃1/H ∼= P1. Moreover β(α(Γ̃1)) is a curve in C×C,
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and therefore surjects on C, hence g(Γ̃1) ≥ g(C) ≥ 2 and so f is branched
in at least 3 points.

Lemma 4.6. Let p be a branch point of f , then ν(p) is a singular point of
X.

Proof. Let p′ ∈ f−1(p) ⊂ Γ̃1 be a ramification point of f , then StabH(p
′) :=

H1 ̸= {1} and so StabG(β(α(p
′))) ⊇ H1. Hence ν(f(p′)) = ν(p) ∈ Sing(X).

□

Corollary 4.7. Any rational curve in X passes at least 3 times through
singular points.

We will need the following consequence of Proposition 4.3.

Corollary 4.8. Let S be a smooth surface of general type. Assume that E
is a (−1)-curve in S, then E cannot intersect three distinct smooth rational
curves with self-intersection −2 or −3.

Proof. By Proposition 4.3 E intersects each of the three curves transversally
in a point.

Contracting E we get three smooth rational curves with self-intersection
−1 or −2 with a common point. If one of them has self-intersection −1,
by Corollary 4.4 a second curve has self-intersection −1, and we find two
intersecting (−1)-curves, which is impossible on a surface of general type.
So all have self-intersection −2.

We pass to the minimal model of S by contracting all possible (−1)-curves.
If one of the contracted curves intersected one of our three (−2)-curves, we
get the same contradiction as above. So the image of our configuration gives
three smooth rational curves with self-intersection −2 on a minimal surface
of general type with a common point. This is impossible (see e.g., [Bom73,
Proposition 2]). □

Proposition 4.3 and Corollary 4.8 imply that, if the basket of singularities
of X is simple enough, then S is minimal. More precisely

Proposition 4.9. Let S → X be a mixed q.e. surface of general type. As-
sume one of the following

i) either all exceptional curves for S → X have self-intersection −2 or
−3

ii) or B(X) = {2× C4,1, 3× C2,1}
Then S is minimal.

Proof. i) In this case, if S were not minimal, by Corollary 4.7 and Proposi-
tion 4.3 then there would be a (−1)-curve E which intersects three different
smooth rational curves with self-intersection −2 or −3, contradicting Corol-
lary 4.8.

ii) In this case the exceptional divisor is given by five rational curves
which do not intersect each other, two of self-intersection −4 and three of
self-intersection −2. If S were not minimal, by Corollary 4.7, Proposition 4.3
and Corollary 4.4 the dual graph of the resulting configuration of rational
curves would be:
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After the contraction of the (−1)-curve we can also contract E′, finding a
surface of general type with two (−2) curves which are tangent in a point.
Contracting all possible further (−1)-curves we find a contradiction as in
the end of the proof of Corollary 4.8 . □

Proposition 4.9 is obviously not sharp: we can prove the same result for
many different baskets of singularities by exactly the same argument. We
decided to state it in this weak form for sake of simplicity, since a posteriori
(inspecting the output of the program we describe in the next section) cases
i) and ii) are the only cases that occur for mixed q.e. surfaces of general type
with pg = 0 and K2 > 0.

5. The classification

We wrote a MAGMA script which computes all mixed q.e. surfaces with
fixed (input of the script) pg, q and K2. To write the algorithm we needed
to overcome some theoretical problems, namely to find explicit bounds for
the basket of singularities B and for the signatures (q;m1, . . . ,mr).

For the basket of singularities, since by Corollary 2.19 B(B) = 24(1− q+
pg)−3K2, it is enough to prove that there are finitely many possible baskets
with fixed invariant B(B), and show how to produce the whole list:

Lemma 5.1. Let B0 ∈ Q. Then there are finitely many baskets B such that

B(B) = B0 .

More precisely |B| ≤ B0/3. Moreover, if n/a = [b1, . . . , bl] then

(1) B(Cn,a) ≥
∑
bi;

(2) B(Dn,a) ≥ 6 + 1
2

∑
bi.

Proof. We note that B(Cn,a) =
a+a′

n +
∑
bi ≥ 3, while B(Dn,a) =

B(Cn,a)
2 +

6 ≥ 15/2 > 3: this proves |B| ≤ B0/3, bounding from above the number of
singular points .
(1) and (2) are trivial consequences of the definitions ofB(Cn,a) andB(Dn,a);
they show that there are only finitely many possible [b1, . . . , bl], so finitely
many pairs (n, a). □

The second problem is to bound the possible signatures, once we have
fixed K2, pg, q and the basket B. We have to find upper bounds for r and
for the mi.

Definition 5.2. Let ρ : S → X = (C × C)/G be a mixed q.e. surface. Let
(q;m1, . . . ,mr) be the signature of the induced generating vector for G0. Let
B be the basket of singularities of X. Then we define the following numbers:

Θ := 2q(S)− 2 +

r∑
i=1

(
mi − 1

mi

)
,
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β :=
12χ(OS) + k(B)− e(B)

3Θ
,

Definition 5.3 (see [Rei87]). The minimal positive integer Ix such that
IxKX is Cartier in a neighborhood of x ∈ X is called the index of the sin-
gularity x. The index of a normal variety X is the minimal positive integer
I such that IKX is Cartier. In particular, I = lcmx∈Sing(X)Ix depends only
on the basket of singularities.

The index of a singularity of type Cn,a is

Ix =
n

gcd(n, a+ 1)
.

We can now give the bounds we need.

Proposition 5.4. Let ρ : S → X = (C ×C)/G be a mixed q.e. surface. Let
(q;m1, . . . ,mr) be the signature of the induced generating vector for G0. Let
B = BC ∪ BD be the basket of singularities of X. Then

a) Θ > 0 and β = g(C)− 1;
b) r ≤ 2Θ + 4(1− q);
c) mi ≤ 4β + 6;
d) each mi divides 2βI where I is the index of Y ;

e) mi ≤
2IβΘ+ 1

M
, with M := max

{
1
6 ,

r−3+4q
2

}
;

f) except at most |BC |+ |BD|/2 indices i, mi ≤
βΘ+ 1

M
and divides β.

Proof. a) Since q(S) = g(C/G0), by Hurwitz’s formula:

2(g(C)− 1) = |G0| ·Θ ,

hence Θ =
2(g(C)− 1)

|G0|
> 0, since g(C) ≥ 2. Let k := k(B) and B := B(B).

By Corollary 2.19 and Proposition 2.18 we get

β =
24χ+ 3k −B

6Θ
=
K2
S + k

2Θ
=

8(g(C)− 1)2

4Θ|G0|
= g(C)− 1 .

b) By definition Θ ≥ 2q − 2 + r
2 , hence r ≤ 2Θ− 4(q − 1).

c) Since mi = ord(hi) and hi is an automorphism of a curve of genus
g ≥ 2, by Wiman’s Theorem (see [Wim95]) mi ≤ 4g + 2 = 4β + 6.

d) Since |B(Y )| = 2|BC | + |BD|, the claim follows by [BP12, Proposition
1.14, d].

e) We first show

Θ +
1

mi
≥ max

{
1

6
,
r − 3 + 4q

2

}
.

Since Θ = 2q − 2 + r −
r∑
j=1

1

mj
, we get

Θ +
1

mi
= 2q − 2 + r −

∑
j ̸=i

1

mj
≥ 2q − 2 + r − r − 1

2
=
r − 3 + 4q

2
.
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Since Θ > 0, r−3+4q
2 ≥ 1

6 unless r = 3 and q = 0. In this case, Θ > 0
implies that at most one mi can be equal to 2. Hence also in this case
Θ + 1

mi
≥ 0− 2 + 3−

∑
j ̸=i

1
mj

≥ 1− 1
2 − 1

3 = 1
6 .

By d), we get(
max

{
1

6
,
r − 3 + 4q

2

})
mi ≤ 1 + Θ ·mi ≤ 1 + 2IβΘ.

f) By [BP12, Proposition 1.14, e], except for at most |B(Y )|/2 = |BC | +
|BD|/2 indices, mi divides β. From mi ≤ β, it follows that(

max

{
1

6
,
r − 3 + 4q

2

})
mi ≤ 1 + Θmi ≤ 1 + Θβ .

□
We used the inequalities proved in this section to produce an algorithm to

compute all mixed q.e. surfaces with fixed pg, q and K2, following the same
strategy of the algorithm of [BP12] which computed the product-quotient
surfaces with pg = q = 0 (input was just K2). The algorithm uses also the
following simple remarks:

Remark 5.5. By Hurwitz’s formula |G| = 2|G0| = 4(g(C)− 1)

Θ
=

4β

Θ
.

Remark 5.6. Let ρ : S → X = (C × C)/G be a mixed q.e. surface. Let
(q;m1, . . . ,mr) be the signature of the induced generating vector for G0. If
X has a singular point of type Cn,a or Dn,a, then there exists mi such that
n divides mi.

Indeed, the singular point is the class of a point (x, y) ∈ C ×C such that
StabG0(x, y) = ⟨η⟩ with o(η) = n. x is a ramification point of c : C → C/G0,
and its ramification index, that equals |StabG0(x)|, is one of the mi. Since
η ∈ StabG0(x), it follows that n divides mi.

We explain here very briefly the strategy of the algorithm.
Having fixed the values of K2

S , pg(S) and q(S), by Corollary 2.19 we know
B(B), and Lemma 5.1 gives easily a procedure to produce the finite list of
baskets with that invariant B. Then, for each basket, we produce the finite
list of all signatures (q;m1, . . . ,mr) respecting all conditions in Proposition
5.4, including the requirement that β is an integer.

Now, for each basket and for each associated signature, the orders of G
and G0 are computed by Remark 5.5. Then the script checks all the finitely
many groups G0 of that order, and their unsplit degree 2 extensions G.

Then we have a list of quintuples (basket, signature, G0, generating vec-
tor, extension), each quintuple gives a family of mixed q.e. surfaces (just
determined by (G0, generating vector, extension) as explained in Remark
1.6), and all mixed q.e. surfaces with the prescribed invariants are here. Any-
way, in this list there are also surfaces with different invariants: those whose
singularities does not correspond to the basket. Then the script computes
these singularities in each case, using the results of section 2, (in particular
Propositions 2.1 and 2.3), and it discards the surfaces with wrong basket.

Moreover, different generating vectors give isomorphic surfaces if they
differ by some Hurwitz moves, which are described, in the cases we need,
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in [Pen11, Section 5]. The script computes this action on the remaining
generating vectors, and returns only a representative for each orbit. Finally,
the script computes, using a result by Armstrong ([Arm65], [Arm68]), the
fundamental groups (see [Fra11]) of the resulting surfaces.

Our code skips some signatures giving rise to groups of large order, either
not covered by the MAGMA SmallGroup database, or causing extreme com-
putational complexity. The program returns the list of the skipped cases,
which have to be studied separately.

A commented version of the full program can be downloaded from:

http://www.science.unitn.it/~pignatel/papers/Mixed.magma

Using it, we proved Theorems A, B and C as follows.
Sketch of the proof of Theorems A, B and C. By Corollary 2.19 every

mixed q.e. surface has K2 ≤ 8χ; so the possible invariants of a minimal
surface of general type with χ = 1 are K2

S = 1, 2, 3, 4, 5, 6, 7, 8 and, by
Beauville’s inequality [Bea82] pg ≥ 2q − 4, pg = q = {0, 1, 2, 3, 4}. We ran
our program for all these values; it returned the surfaces in Tables 1, 2 and
3.

K2
S SingX Sign. |G0|
1 2× C8,1, C4,1 2,3,8 6336

1 3× C4,1, C4,3 2,3,8 2304

1 C8,1, C4,1, C8,5 2,3,8 4032

1 4× C4,1, C2,1 2,3,8 2880

1 2× C8,3, C4,1, C2,1 2,3,8 2304

1 2× C2,1, C8,3, C8,1 2,3,8 3744

2 2× C8,3, C4,1 2,3,8 2880

2 C8,3, C8,1, C2,1 2,3,8 4320

2 4× C4,1 2,4,5 2400

2 4× C4,1 2,3,8 3456

2 C8,3, C8,5, C2,1 2,3,8 2016

2 2× C4,1, 3× C2,1 2,3,8 2304

2 2× C4,1, C3,1, C3,2 2,3,8 2496

3 2× C4,1, 2× C2,1 2,3,8 2880

3 C8,3, C8,1 2,3,8 4896

3 2× C4,1, C5,3 2,4,5 2160

3 C8,3, C8,5 2,3,8 2592

3 C4,3, C4,1, C2,1 2,3,8 2304

K2
S SingX Sign. |G0|
4 C4,3, C4,1 2,3,8 2880

4 4× C2,1 2,3,8 2304

4 C3,1, C3,2, C2,1 2,3,8 2496

4 2× C4,1, C2,1 2,4,5 2400

4 2× C4,1, C2,1 2,3,8 3456

5 C5,2, C2,1 2,4,5 2160

5 3× C2,1 2,3,8 2880

5 C3,1, C3,2 2,3,8 3072

5 2× C4,1 2,4,5 2800

5 2× C4,1 2,3,8 4032

6 2× C2,1 2,4,5 2400

6 2× C2,1 2,3,8 3456

6 2× C5,3 2,4,5 2560

7 C2,1 2,3,9 2268

7 C2,1 2,4,5 2800

7 C2,1 2,3,8 4032

8 ∅ 2,3,9 2592

8 ∅ 2,4,5 3200

8 ∅ 2,3,8 4608

Table 4. The skipped cases for pg = q = 0 and K2 > 0

As mentioned, the surfaces returned by the program may be not all mixed
q.e. surfaces with the required invariants, since the program is forced to skip
some signatures, giving rise to groups of large order. The program returns
the list of these “skipped” cases.

http://www.science.unitn.it/~pignatel/papers/Mixed.magma
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For the cases pg = q ̸= 0, this list is empty, so the Tables 2 and 3 are
complete. We report the list of the “skipped” signatures for pg = q = 0
in Table 4. We proved that none of these cases occur by arguments very
similar to the analogous proofs in the papers [BCGP12, BP12, Fra11] and
therefore we do not include them here. The interested reader will find the
details in

http://www.science.unitn.it/~pignatel/papers/skipped.pdf

Now let us consider the surfaces in Tables 1, 2 and 3. A surface with
K2 > 0 is either of general type or rational, therefore regular and simply
connected: a quick inspection of the tables shows that this latter case does
not occur, so all constructed surfaces are of general type. By Theorem 4.5
and Proposition 4.9 all the constructed surfaces are minimal. Moreover,
again by Proposition 4.5, since every minimal surface of general type has
positive K2, we have found all irregular mixed q.e. surfaces with pg = q. □

References

[Arm65] M.A. Armstrong. On the fundamental group of an orbit space. Proc.
Cambridge Phil. Soc., 61:639–646, 1965.

[Arm68] M.A. Armstrong. The fundamental group of the orbit space of a discontinuous
group. Proc. Cambridge Phil. Soc., 64:299–301, 1968.

[BC04] I. Bauer and F. Catanese. Some new surfaces with pg = q = 0. In Turin Univ.
Torino, editor, The Fano Conference, pages 123–142, 2004.

[BCG08] I. Bauer, F. Catanese, and F. Grunewald. The classification of surfaces with
pg = q = 0 isogenous to a product of curves. Pure Appl. Math. Q., 4(2):547–
586, 2008.

[BCGP12] I. Bauer, F. Catanese, F. Grunewald, and R. Pignatelli. Quotients of products
of curves, new surfaces with pg = 0 and their fundamental groups. American
Journal of Mathematics, 134(4):993–1049, 2012.

[BCP06] I. Bauer, F. Catanese, and R. Pignatelli. Complex Surfaces of General Type:
Some Recent Progress. In Global aspects of complex geometry, pages 1–58.
Springer, Berlin, 2006.

[BCP11] I. Bauer, F. Catanese, and R. Pignatelli. Surfaces of general type with geo-
metric genus zero: A survey. In Complex and Differential Geometry, volume
8, pages 1–48. Springer Proceedings in Mathematics, 2011.
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