We consider Riemannian manifolds of dimension at least 3, with nonnegative Ricci curvature and Euclidean volume growth. For every open bounded subset with smooth boundary we establish the validity of an optimal Minkowski inequality. We also characterise the equality case, provided the domain is strictly outward minimising and strictly mean convex. Along with the proof, we establish in full generality sharp monotonicity formulas, holding along the level sets of p-capacitary potentials in p-nonparabolic manifolds with nonnegative Ricci curvature.

MINKOWSKI INEQUALITY ON COMPLETE RIEMANNIAN MANIFOLDS WITH NONNEGATIVE RICCI CURVATURE / Benatti, L.; Fogagnolo, M.; Mazzieri, L.. - In: ANALYSIS & PDE. - ISSN 2157-5045. - 17:9(2024), pp. 3039-3077. [10.2140/apde.2024.17.3039]

MINKOWSKI INEQUALITY ON COMPLETE RIEMANNIAN MANIFOLDS WITH NONNEGATIVE RICCI CURVATURE

Benatti L.;Fogagnolo M.;Mazzieri L.
2024-01-01

Abstract

We consider Riemannian manifolds of dimension at least 3, with nonnegative Ricci curvature and Euclidean volume growth. For every open bounded subset with smooth boundary we establish the validity of an optimal Minkowski inequality. We also characterise the equality case, provided the domain is strictly outward minimising and strictly mean convex. Along with the proof, we establish in full generality sharp monotonicity formulas, holding along the level sets of p-capacitary potentials in p-nonparabolic manifolds with nonnegative Ricci curvature.
2024
9
Benatti, L.; Fogagnolo, M.; Mazzieri, L.
MINKOWSKI INEQUALITY ON COMPLETE RIEMANNIAN MANIFOLDS WITH NONNEGATIVE RICCI CURVATURE / Benatti, L.; Fogagnolo, M.; Mazzieri, L.. - In: ANALYSIS & PDE. - ISSN 2157-5045. - 17:9(2024), pp. 3039-3077. [10.2140/apde.2024.17.3039]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/439070
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact