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MINKOWSKI INEQUALITY ON COMPLETE RIEMANNIAN MANIFOLDS
WITH NONNEGATIVE RICCI CURVATURE

LUCA BENATTI, MATTIA FOGAGNOLO AND LORENZO MAZZIERI

We consider Riemannian manifolds of dimension at least 3, with nonnegative Ricci curvature and Eu-
clidean volume growth. For every open bounded subset with smooth boundary we establish the validity of
an optimal Minkowski inequality. We also characterise the equality case, provided the domain is strictly
outward minimising and strictly mean convex. Along with the proof, we establish in full generality
sharp monotonicity formulas, holding along the level sets of p-capacitary potentials in p-nonparabolic
manifolds with nonnegative Ricci curvature.

1. Introduction

1A. Statements of the main results. Given an open bounded convex domain with smooth boundary
�⊆ Rn , n ≥ 3, the classical Minkowski inequality, originally proven in [Minkowski 1903], gives a sharp
lower bound for the average of the mean curvature H of ∂� in terms of the inverse of its surface radius,
that is, (

|Sn−1
|

|∂�|

) 1
n−1

≤ /
∫
∂�

H
n − 1

dσ,

with the equality satisfied if and only if � is a ball. It was clear to many authors that such inequality
deserved to be further investigated. For example one would like to relax the convexity assumption on one
hand, and to prove that the inequality holds on more general ambient manifolds on the other.

The first question has been positively answered using techniques based on geometric flows [Huisken
2009], optimal transport [Chang and Wang 2013; Castillon 2010], and recently also nonlinear potential
theory [Fogagnolo et al. 2019; Agostiniani et al. 2022a]. The latter method actually provides the most
general statement available so far, namely the extended Minkowski inequality(

|∂�∗
|

|Sn−1|

)n−2
n−1

≤
1

|Sn−1|

∫
∂�

∣∣∣∣ H
n − 1

∣∣∣∣ dσ (1-1)

holding for every open bounded domain � ⊆ Rn with smooth boundary. Here �∗ denotes the strictly
outward minimising hull of �. The precise definition of �∗ is reported in (4-12) below and analysed in
full detail in [Fogagnolo and Mazzieri 2022]. However, in this preliminary discussion, we just point out
that �∗ minimises the perimeter among bounded subsets containing �.
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Many improvements can be found in the literature also concerning the question of extending the
Minkowski inequality to more general settings. Firstly Gallego and Solanes [2005] established quer-
massintegral inequalities for convex domains in the hyperbolic space. Using the inverse mean curvature
flow (IMCF for short), de Lima and Girão [2016] extended the result to star-shaped and strictly mean-
convex domains lying in the same ambient manifold. The IMCF has been also employed to establish a
Minkowski-type inequality for outward minimising sets sitting in the Schwarzschild manifold by Wei
[2018], in the anti-de Sitter–Schwarzschild manifold by Brendle, Hung and Wang [Brendle et al. 2016],
and on asymptotically flat static manifolds by McCormick [2018].

A natural context in which to test the validity of a Minkowski inequality is provided by complete
noncompact Riemannian manifolds with nonnegative Ricci curvature. A very recent work [Brendle
2023] actually points in this direction. Indeed, choosing f = 1 in Corollary 1.5 of that work a nonsharp
Minkowski inequality can be deduced for complete Riemannian manifolds with nonnegative sectional
curvature and Euclidean volume growth. In the present paper, we prove the following theorem.

Theorem 1.1 (extended Minkowski inequality). Let (M, g) be a complete Riemannian manifold with
Ric ≥ 0 and Euclidean volume growth. Let �⊆ M be an open bounded set with smooth boundary. Then(

|∂�∗
|

|Sn−1|

)n−2
n−1

AVR(g)
1

n−1 ≤
1

|Sn−1|

∫
∂�

∣∣∣∣ H
n − 1

∣∣∣∣ dσ, (1-2)

where AVR(g) is the asymptotic volume ratio of (M, g), H is the mean curvature of ∂� with respect to
the outward normal unit vector and �∗ is the strictly outward minimising hull of �.

In the case a strictly outward minimising � ⊂ M with strictly mean-convex boundary achieves the
identity in (1-2), we show that M ∖� splits as a (truncated) cone.

Theorem 1.2 (rigidity for the Minkowski inequality). A bounded strictly outward minimising subset
�⊂ M with smooth strictly mean-convex boundary satisfies(

|∂�|

|Sn−1|

)n−2
n−1

AVR(g)
1

n−1 =
1

|Sn−1|

∫
∂�

H
n − 1

dσ

if and only if (M ∖�, g) is isometric to(
[ρ0,+∞)× ∂�, dρ⊗ dρ+

(
ρ

ρ0

)2

g∂�

)
, where ρ0 =

(
|∂�|

AVR(g)|Sn−1|

) 1
n−1

.

Some comments are in order about the above statements. First, we recall for the reader’s convenience
that the asymptotic volume ratio of (M, g) is given by

AVR(g)= lim
r→+∞

|B(o, r)|
rn|Bn|

for some o ∈ M. The fact that, on complete manifolds with nonnegative Ricci curvature, the above limit is
well-defined and does not depend on the base point o, is a consequence of the classical Bishop–Gromov
volume comparison theorem. Moreover, one has that 0 ≤ AVR(g)≤ 1, with AVR(g)= 1 if and only if
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(M, g) is the standard n-dimensional Euclidean space. Beside the intrinsic fundamental role played by
manifolds with nonnegative Ricci curvature with Euclidean volume growth in geometric analysis, this class
includes a diversity of explicit manifolds naturally arising from different fields, such as asymptotically
locally Euclidean spaces (ALE for short) gravitational instantons. These are noncompact hyperkhäler
Ricci flat 4-dimensional manifolds playing a role in the study of Euclidean quantum gravity theory, gauge
theory and string theory (see [Hawking 1977; Eguchi and Hanson 1979; Kronheimer 1989a; 1989b;
Minerbe 2009; 2010; 2011]).

It is worth noticing that inequality (1-2) is sharp and it provides the optimal Minkowski inequality on
manifolds with nonnegative Ricci curvature for outward minimising subsets, see Corollary 4.6. These
subsets are mean-convex and satisfy |∂�∗

| = |∂�|, so that the Minkowski inequality reads(
|∂�|

|Sn−1|

)n−2
n−1

AVR(g)
1

n−1 ≤
1

|Sn−1|

∫
∂�

H
n − 1

dσ,

in this case. In addition to the Euclidean spaces, where it is immediately seen that balls achieve the identity
in (1-2), the sharpness of this inequality is checked in far greater generality, as specified in Remark 4.7
below.

Combining Theorem 1.1 with the sharp isoperimetric inequality for manifolds with nonnegative Ricci
curvature, first proved in dimension 3 in [Agostiniani et al. 2020, Theorem 1.4] and recently extended
to any dimension in [Brendle 2023] (see also [Fogagnolo and Mazzieri 2022; Johne 2021; Balogh and
Kristály 2023]), reading

|Sn−1
|
n

|Bn|n−1 AVR(g)≤
|∂�∗

|
n

|�∗|n−1 ,

we get the following sharp volumetric version of the Minkowski inequality.

Theorem 1.3 (volumetric Minkowski inequality). Let (M, g) be a complete Riemannian manifold with
Ric ≥ 0 and Euclidean volume growth. Let �⊆ M be an open bounded set with smooth boundary. Then(

|�|

|Bn|

)n−2
n

AVR(g)
2
n ≤

1
|Sn−1|

∫
∂�

∣∣∣∣ H
n − 1

∣∣∣∣ dσ, (1-3)

where AVR(g) is the asymptotic volume ratio of (M, g), H is the mean curvature of ∂� with respect to
the outward normal unit vector. Moreover, the equality is satisfied if and only if (M, g) is isometric to the
flat Euclidean space and � is a ball.

As for the extended Minkowski inequality, (1-3) is easily recognised to be sharp, while the rigidity
statement directly follows from the rigidity of the isoperimetric inequality. We finally point out that earlier
contributions to the volumetric Minkowski inequality were given in [Chang and Wang 2011; Qiu 2015],
holding in the flat Euclidean space and under stronger geometric assumptions on the boundary of �.

1B. Outline of the proof. We now describe the main features of our approach, which is in line with
[Agostiniani and Mazzieri 2020; Agostiniani et al. 2020; 2022a; Fogagnolo et al. 2019]. Given (M, g) a
Riemannian n-manifold, n ≥ 3, with nonnegative Ricci curvature, and an open bounded subset �⊆ M



3042 LUCA BENATTI, MATTIA FOGAGNOLO AND LORENZO MAZZIERI

with smooth boundary we consider, for every 1< p < n, the p-capacitary potential associated to �. This
is the solution u to the problem 

1
(p)
g u = 0 on M ∖�,

u = 1 on ∂�,
u(x)→ 0 as dg(x, o)→ +∞,

(1-4)

where1(p)g is the p-Laplace operator associated with the metric g, and dg( · , o) is the distance induced by g
to some fixed reference point o. Provided the manifold (M, g) is p-nonparabolic (see Definition 2.5 below,
as well as [Holopainen 1990; 1999]), the solution to problem (1-4) exists and is unique. Such a solution
is commonly referred to as the p-capacitary potential associated with �. It is worth specifying that
manifolds with Euclidean volume growth (i.e., AVR(g) > 0) do satisfy the p-nonparabolicity assumption
for 1< p < n by the characterisation given in [Holopainen 1999, Proposition 5.10]. As a crucial step
in our method, we will establish families of monotonicity formulas, holding along the level sets of the
p-capacitary potentials associated with �. More precisely, for every t ∈ [1,+∞), we set

Fβp (t)= tβ
(n−1)(p−1)
(n−p)

∫
{u=1/t}

|Du|
(β+1)(p−1) dσ, (1-5)

and we show that for

β >
n − p

(p − 1)(n − 1)

the above quantity admits a nonincreasing C 1(1,+∞) representative.
Some remarks are mandatory at this stage. First of all, let us point out that the monotonicity statement

provided here for the functions Fβp holds in full generality and with no restriction on the geometry of �.
As such, it is also new for domains sitting in Rn, where the same conclusions were provided in [Fogagnolo
et al. 2019] only for convex domains, and in fact for smooth level sets flows. In the general case, it is
well known that the level sets flow of p-harmonic functions might present a much less regular behaviour
since no general bound is available for the Hausdorff dimension of the critical set. To overcome these
difficulties, the authors in [Agostiniani et al. 2022a] settled for the effective inequalities

lim
t→+∞

Fβp (t)≤ Fβp (1) and (Fβp )
′(1)≤ 0. (1-6)

The derivation of these two bounds, however, heavily relied on the compactness of the critical set of u,
that is a particular feature of spaces with finite topology, and as such it is not directly viable in our setting
(see [Menguy 2000]). In contrast with this, the present treatment provides the desired extension to the
nonlinear setting and to the general framework of nonnegatively Ricci curved p-nonparabolic manifolds
of the monotonicity formulas discovered in [Colding 2012; Colding and Minicozzi 2014b; Agostiniani
and Mazzieri 2020; Agostiniani et al. 2020] for harmonic functions. As a second remark, to let the
reader appreciate the C 1-regularity result, we observe that in principle even the fact that formula (1-5)
yields a well-posed definition is not granted for free. The most serious difficulty here is that the set of
singular values cannot be controlled through Sard’s theorem, since p-harmonic functions only enjoy a
mild — though optimal — C 1,β-regularity. We managed to solve these problems also taking advantage of
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recent insights given in [Gigli and Violo 2023]. The full statement of the monotonicity theorem is found
in Theorem 3.1 below.

Through the monotonicity of Fβp , with β = (p − 1)−1, we arrive at the following L p-Minkowski
inequality

Cp(�)
n−p−1

n−p AVR(g)
1

n−p ≤
1

|Sn−1|

∫
∂�

∣∣∣∣ H
n − 1

∣∣∣∣p

dσ, (1-7)

where Cp(�) is the normalised p-capacity of � defined in (2-5) below. A major advantage we draw out
of the full monotonicity of Fβp is the bypassing of the computation of its limit as t → +∞ when reaching
for (1-7). Indeed, this step is now replaced by a suitable contradiction argument that combines the full
monotonicity of our quantities with the sharp iso-p-capacitary inequality (see Theorem 4.1 below)

Cp(B
n)n

|Bn|n−p AVR(g)p
≤

Cp(�)
n

|�|n−p . (1-8)

Such a statement is of independent interest in our opinion and can be achieved by taking advantage of
the already-mentioned sharp isoperimetric inequality in manifolds with nonnegative Ricci curvature and
Euclidean volume growth, following rather classical arguments (see, e.g., [Jauregui 2012]).

With the L p-Minkowski inequality (1-7) at hand, the extended Minkowski inequality (1-7) simply
follows by letting p → 1+ since

lim
p→1+

Cp(�)=
|∂�∗

|

|Sn−1|
,

as proven in [Fogagnolo and Mazzieri 2022, Theorem 1.2]. This particular feature of our approach,
namely the fact that the Minkowski inequality is obtained as the limit of its L p-versions, makes the rigidity
statement a particularly nontrivial task, although we show that (1-7) holds with equality only on cones.
This leads us to prove the rigidity statement, Theorem 1.2, through an argument involving the study of the
IMCF starting at boundaries of domains that saturate the Minkowski inequality (1-1). More precisely, we
first show that the flow is smooth and given by constantly mean-curved totally umbilical hypersurfaces
for a short time. This crucially exploits the nonnegativity of the Ricci curvature (Lemma 4.8). Then,
a splitting procedure along such flow, inspired by [Huisken and Ilmanen 2001], shows that an outer
neighbourhood of ∂� is isometric to a truncated cone with the same volume ratio as AVR(g), and this
allows us to conclude (Lemma 4.9).

1C. Further monotonicity-rigidity results. Beside the monotonicity-rigidity properties of Fβp discussed
above, we also establish analogous ones for the function

F∞

p (t)= t
n−1
n−p sup

{u=1/t}
|Du|.

This is the content of Theorem 3.2, which is again proved in the general setting of p-nonparabolic
manifolds with nonnegative Ricci curvature, extending [Fogagnolo et al. 2019, Theorem 1.3]. As geometric
consequences of this statement, we provide a rigidity result under pinching conditions and a sphere
theorem for smooth boundaries in manifolds with Ric ≥ 0 (see Theorems 4.11 and 4.12 below) and
Euclidean volume growth. It is worth mentioning that the monotonicity of F∞

p also leads to a new insight
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on the critical set of the p-capacitary potential, which we believe deserves some further investigation.
Namely, it turns out that every level set of u displays some nonempty relatively open region, where Du
does not vanish, and where in particular u is smooth (see Corollary 3.3).

1D. Summary. In Section 2 we report, for the ease of the reader, some relevant facts from the theory
of p-harmonic functions on Riemannian manifolds, focussing on the regularity theory as well as on
the existence and uniqueness of solutions to (1-4). Some important — though already well known —
estimates and identities are also recalled in this section. Section 3 is devoted to the proof of monotonicity-
rigidity theorems (see Theorems 3.1 and 3.2). After having introduced a convenient conformally related
setting, we restate them in this framework and we conclude the section with their proofs. In Section 4,
after having provided (1-8), we make use of these tools to prove the L p-Minkowski inequality (see
Theorem 4.3), deduce the extended Minkowski inequality Theorem 1.1 and some rigidity results under
pinching conditions as consequences of the monotonicity-rigidity theorems.

2. The p-capacitary potential in Riemannian manifolds

We have collected here, for the sake of future reference, some substantially well-known results that will
be repeatedly applied in our arguments. Before considering the specific case of problem (1-4), we recall
the definition of p-harmonic functions, as well as their regularity estimates. We then analyse the existence
and uniqueness of the solution u p to (1-4) on complete Riemannian manifolds. It turns out that these
questions are intimately related to the notion of p-nonparabolicity, and p-nonparabolic manifolds will
then constitute the natural setting for the monotonicity-rigidity theorems. We afterwards recall some
global standard estimates on u p and its gradient as well as a Kato-type identity for p-harmonic functions.

2A. p-harmonic functions and regularity. Given an open subset U of a complete Riemannian manifold
(M, g), we say that v ∈ W 1,p(U ) is p-harmonic if∫

U

〈
|Dv|p−2Dv

∣∣ Dψ
〉
dµ= 0 (2-1)

for any test function ψ ∈ C ∞
c (U ). With ⟨ · | · ⟩ we denote as usual the scalar product induced by the

underlying Riemannian metric g on the tangent space at each point. Regularity results for p-harmonic
functions (see [Tolksdorf 1984; DiBenedetto 1983; Lieberman 1988]) ensure that v belongs to C

1,β
loc (U )

for some β ∈ (0, 1) and is smooth around each point where |Dv|> 0.
Since the C 1,β-regularity is not sufficient to employ Sard’s theorem, we are going to heavily rely on

the coarea formula. We report it here for ease of further references. The statement below follows from
[Maggi 2012, Lemma 18.5 and Theorem 18.1] coupled with standard approximation results.

Proposition 2.1 (coarea formula). Let (M, g) be a complete Riemannian manifold. Consider a locally
Lipschitz function v : U → [0,+∞) on some open subset U ⊆ M such that v−1([a, b]) is compact for
every [a, b] ⊂ (0,+∞). Then the following hold:

(1) |{v = t} ∩ Crit(v)| = 0 for almost every t ∈ [0,+∞).
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(2) For every measurable f such that f |Dv| ∈ L1
loc(U ) we have f ∈ L1({v = t}) for almost every

t ∈ (0,+∞) and ∫
U
ψ(v) f |Dv| dµ=

∫
+∞

0
ψ(t)

∫
{v=t}

f dσ dt (2-2)

for every ψ bounded measurable function compactly supported in (0,+∞). In particular,

t 7→

∫
{v=t}

f dσ ∈ L1
loc(0,+∞),

and its equivalence class does not depend on the representative of f .

Remark 2.2. If h ∈ L1
loc(U ) and h = 0 almost everywhere on Crit(v), the function f = h|Dv|−1, satisfies

the assumptions of Proposition 2.1(2). Clearly, if f ∈ L1(U ), then (2-2) holds for every ψ bounded
measurable, even without compact support.

With the idea of applying the previous result for f = |D|Dv|p−1
|, a higher integrability degree of

p-harmonic functions is required. We refer the reader to [Lou 2008, Lemma 2.1] for a self-contained
proof of the following lemma in the Euclidean case. The general case follows in the same way, as it
is ultimately due to a careful integration of the Bochner identity. Indeed, computations are the same
provided a lower bound on the Ricci tensor is in force, which is always true locally (see [Benatti 2022,
Appendix C] for a complete proof).

Lemma 2.3. Let (M, g) be a complete Riemannian manifold and U ⊆ M be an open subset. Given
v ∈ W 1,p(U ) a p-harmonic function, then |Dv|p−1

∈ W 1,2
loc (U ).

Given U ⊆ M with Lipschitz boundary, a p-harmonic function u ∈ W 1,p(U ) attains some Dirichlet
data g ∈ L p(∂U ) if u coincides with g on ∂U in the sense of the trace operator.

2B. p-nonparabolic manifolds and the p-capacitary potential. Given a noncompact Riemannian mani-
fold M, we consider the p-capacitary potential of a bounded set with smooth boundary �⊂ M, that is,
a function u ∈ W 1,p(M ∖�) solving (1-4). The function u belongs to C 1,β(M ∖�) (see [Lieberman
1988]) and it is smooth near the points where the gradient does not vanish. In particular, by the Hopf
maximum principle in [Tolksdorf 1983, Proposition 3.2.1] the datum on ∂� is attained smoothly.

We now focus on some classical sufficient conditions to ensure the existence of the p-capacitary
potential, which turns out to be related to the notion of p-Green’s function we are going to recall.

Definition 2.4 (p-Green’s function). Let (M, g) be a complete Riemannian manifold. Let Diag(M)=

{(x, x) ∈ M × M | x ∈ M}. For p ≥ 1, we say that G p : M × M ∖Diag(M)→ R is a p-Green’s function
for M if it weakly satisfies 1pG(o, · )= −δo for any o ∈ M, where δo is the Dirac delta centred at o, that
is, if it holds ∫

M

〈
|DG p(o, · )|p−2 DG p(o, · )

∣∣ Dψ
〉
dµ= ψ(o)

for any ψ ∈ C ∞
c (M).

The notion of p-Green’s function calls for that of p-nonparabolic Riemannian manifold.
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Definition 2.5 (p-nonparabolicity). We say that a complete noncompact Riemannian manifold (M, g)
is p-nonparabolic if there exists a positive p-Green’s function G p : M × M ∖Diag(M)→ R. With the
expression p-Green function we are in fact referring to the positive minimal one.

The notion of p-nonparabolicity is intimately related to the existence of a solution to (1-4), in that
if the positive p-Green’s function of a p-nonparabolic Riemannian manifold vanishes at infinity, then
such a solution exists for any open bounded subset � ⊂ M with smooth boundary. A complete and
self-contained proof of this fact is provided in the Appendix of [Fogagnolo and Mazzieri 2022]. We
report the statement of such basic thought fundamental result.

Theorem 2.6 (existence of the p-capacitary potential). Let (M, g) be a complete noncompact p-
nonparabolic Riemannian manifold. Let � ⊂ M be an open bounded subset with smooth boundary.
Assume also that the p-Green’s function G p satisfies G p(o, x)→ 0 as dg(o, x)→ +∞ for some o ∈ M.
Then, there exists a unique solution u p to (1-4).

If (M, g) is a complete noncompact Riemannian manifold with Ric ≥ 0 and Euclidean volume growth,
then it is in fact p-nonparabolic for every 1< p < n and the p-Green’s function satisfies

G p(o, x)≤ C dg(o, x)−
n−p
p−1 (2-3)

for some constant C. This is a direct consequence of [Holopainen 1999, Proposition 5.10].
We find convenient to recall here the definition of p-capacity of an open bounded subset � ⊂ M

together with a normalised version of it which turns out to be more advantageous for our computations.

Definition 2.7 (p-capacity and normalised p-capacity). Let (M, g) be a complete noncompact Riemannian
manifold, and let � be an open bounded subset of M. For 1< p < n, the p-capacity of � is defined as

Capp(�)= inf
{∫

M
|Dv|p dµ

∣∣∣∣ v ∈ C ∞

c (M), v ≥ 1 on �
}
. (2-4)

On the other hand, the normalised p-capacity of � is defined as

Cp(�)=
1

|Sn−1|

(
p − 1
n − p

)p−1

Capp(�). (2-5)

A function u solving (1-4) realises the p-capacity of the initial set �, and actually one can also
characterise such quantity with a suitable integral on ∂�. We resume these facts in the following statement.

Proposition 2.8. Let (M, g) be a complete noncompact p-nonparabolic Riemannian manifold for some
1< p < n. Let �⊂ M be an open bounded subset with smooth boundary. Then the solution u p to (1-4)
realises

Cp(�)=
1

|Sn−1|

(
p − 1
n − p

)p−1∫
M∖�

|Du p|
p dµ. (2-6)

Moreover, we have that

Cp(�)=
1

|Sn−1|

(
p − 1
n − p

)p−1∫
{u p=1/t}

|Du p|
p−1 dσ (2-7)

holds for almost every t ∈ [1,+∞), including any 1/t that is a regular value for u p.
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Proof. The function u p can be approximated in W 1,p(M ∖�) by functions ϕ in C ∞
c (M) which satisfy

ϕ ≥ 1 on �. Then

Capp(�)≤

∫
M∖�

|Du p|
p dµ.

On the other hand, the weak formulation in (2-1) can be relaxed in duality with functions in W 1,p
0 (M∖�).

Hence, taking any competitor ψ ∈ C ∞
c (M) with ψ ≥ 1 on �, u p −ψ ∈ W 1,p

0 (M ∖�), we get that∫
M∖�

|Du p|
p dµ=

∫
M∖�

⟨|Du p|
p−2Du p,Du p⟩ dµ=

∫
M∖�

⟨|Du p|
p−2Du p,Dψ⟩ dµ.

Applying the Hölder inequality to the right-hand side, we are left with∫
M∖�

|Dv|p dµ≤

∫
M∖�

|Dψ |
p dµ

for every competitor ψ in (2-4), proving (2-6). Since |Du p| ∈ L p(M ∖�), applying the coarea formula
(2-2) with f = |Du p|

p−1 to (2-6) (see Remark 2.2) one can obtain that

Capp(�)=

∫ 1

0

∫
{u p=τ }

|Du p|
p−1 dσ dτ. (2-8)

Employing again the coarea formula (2-2) with f = |Du p|
p−1 and integration by parts we get∫ 1

0
ϕ′(τ )

∫
{u p=τ }

|Du p|
p−1 dσ dτ =

∫
M∖�

ϕ′(u p)|Du p|
p dµ= −

∫
M∖�

|Du p|
p−2

⟨Du p,D(ϕ(u p))⟩ dµ

=

∫
M∖�

ϕ(u p) div(|Du p|
p−2Du p) dµ= 0

for every ϕ ∈ C ∞
c (0, 1), which gives that

τ 7→

∫
{u p=τ }

|Du p|
p−1 dσ

admits a constant representative; that coupled with (2-8) yields (2-7), letting t = 1/τ . □

In particular, evaluating (2-7) at t = 1, which is a regular value by the Hopf maximum principle
[Tolksdorf 1983, Proposition 3.2.1], we have that

Cp(�)=
1

|Sn−1|

(
p − 1
n − p

)p−1∫
∂�

|Du p|
p−1 dσ.

Moreover, one can actually relate the capacity of �t = {u > 1/t} ∪� to the capacity of �. The proof
of the following lemma is contained in [Holopainen 1990, Lemma 3.8].

Proposition 2.9. Let (M, g) be a complete noncompact p-nonparabolic Riemannian manifold for some
1 < p < n. Let � ⊂ M be an open bounded subset with smooth boundary. Then a solution u p to (1-4)
realises

Cp(�t)= t p−1Cp(�) (2-9)

for every t ∈ [1,+∞), where �t = {u > 1/t} ∪�. In particular, the map t 7→ Cp(�t) is smooth.
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2C. Li–Yau-type estimates. We provide a sharp lower estimate for the p-Green’s function, extending the
well-known

dg(o, x)2−n
≤ G2(o, x) (2-10)

holding true for any couple of points o, x belonging to a 2-nonparabolic Riemannian manifolds with
nonnegative Ricci curvature. The proof of (2-10) builds on the Laplacian comparison, which applies to
showing that

1 dg(o, · )2−n
≥ 0

in the sense of distributions. This amounts to saying that

−

∫
M

〈
Ddg(o, · )2−n

∣∣ Dψ
〉
dµ=

∫
M

dg(o, · )2−n1ψ dµ≥ 0 (2-11)

for any test function ψ ∈ C ∞
c (M). This leads to (2-10) substantially through the maximum principle. We

refer the reader to [Agostiniani et al. 2020, Lemma 2.12] for details. The nonlinear version of (2-10),
that, to our knowledge, has not been explicitly pointed out in literature yet, actually relies on (2-11) too.

Proposition 2.10 (sharp lower bound for the p-Green’s function). Let (M, g) be a complete p-nonparabolic
Riemannian manifold, 1< p < n, with Ric ≥ 0. Let o ∈ M. Then, we have

dg(o, x)−
n−p
p−1 ≤ G p(o, x) (2-12)

for any x ∈ M ∖ {o}.

Proof. Fix for simplicity o ∈ M, and let r(x)= dg(o, x). We first show that 1pr−(n−p)/(p−1)
≥ 0 holds in

the weak sense, that is, ∫
M

⟨|Dr−
n−p
p−1 |

p−2Dr−
n−p
p−1 ,Dψ⟩ dµ≤ 0

for any ψ ∈ C ∞
c (M). In fact, we have∫

M
⟨|Dr−

n−p
p−1 |

p−2Dr−
n−p
p−1 ,Dψ⟩ dµ= −

(
n − p
p − 1

)p−1∫
M

r1−n
⟨Dr,Dψ⟩ dµ

=
1

n − 2

(
n − p
p − 1

)p−1∫
M

⟨Dr2−n,Dψ⟩ dµ≤ 0,

where the last inequality is the Laplacian comparison theorem (2-11).
Let now be δ > 0. Since both r−(n−p)/(p−1) and G p vanish at infinity, we have r−(n−p)/(p−1)

≤

G p + δ on ∂B(o, R) for any R > 0 big enough. On the other hand, the general result [Serrin 1964,
Theorem 12] ensures that G p(o, x) is asymptotic to r(x)−(n−p)/(p−1) as dg(o, x)→ 0+, and thus we also
get r−(n−p)/(p−1)

≤ G p + δ on ∂B(o, ε) for any ε > 0 small enough. Thus, applying the comparison
principle to the subsolution r−(n−p)/(p−1) and to the solution G p + δ (with respect to the p-Laplacian), in
the annulus B(o, R)∖ B(o, ε), we get r−(n−p)/(p−1)

≤ G p + δ on such an annulus. Letting ε→ 0+ and
R → +∞, we deduce that the same holds on the whole M ∖ {o}. Finally, letting δ → 0+, we are left
with (2-12). □
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Coupling (2-3) and (2-12) with the comparison principle, we deduce the following important estimate
for the p-capacitary potential.

Theorem 2.11. Let (M, g) be a complete p-nonparabolic Riemannian manifold for some for some
1 < p < n, with Ric ≥ 0. Let � ⊂ M be a bounded subset with smooth boundary, and let u p be its
p-capacitary potential. Then, there exists a positive constant C1 such that

C1 dg(o, x)−
n−p
p−1 ≤ u p(x) (2-13)

for any x ∈ M ∖�. If in addition (M, g) has Euclidean volume growth, then there also exists another
positive constant C2 such that

u p(x)≤ C2 dg(o, x)−
n−p
p−1 . (2-14)

Proof. In light of (2-12) and (2-3), this one holding true if (M, g) satisfies the additional Euclidean
volume growth assumption, it suffices to show that there exist positive constants C1 and C2 such that
C1G p ≤ u p ≤ C2G p. Choose any C1 < 1/ sup∂� u p. Then, C1G p < u p on ∂�. Moreover, since both
u p and G p vanish at infinity, for any δ > 0 we have C1G p < u p + δ on ∂B(o, R) for any R big enough.
The comparison principle applied to the p-harmonic functions u p + δ and G p in B(o, R)∖� shows that
C1G p < u + δ in the latter subset. The radius R being arbitrarily big, this implies that, by passing to the
limit as R → +∞, that C1G p < u p + δ in the whole M ∖�. Letting δ→ 0+ leaves us with C1G p ≤ u p,
and consequently with (2-13). The inequality u p ≤ C2G p, yielding (2-14), is shown the same way. □

We now couple (2-13) with the general Cheng–Yau-type inequality for p-harmonic functions on
manifolds with nonnegative Ricci curvature provided in [Wang and Zhang 2011]. It asserts that a
p-harmonic function v, with 1 < p < n defined in a ball B(o, 2R) ⊂ M, where M is endowed with a
Riemannian metric such that Ric ≥ 0, satisfies the estimate

sup
B(o,R)

|Dv|
v

≤
C
R

(2-15)

for a constant C depending only on the dimension of the ambient manifold and p. With these tools we
immediately obtain:

Proposition 2.12. Let (M, g) be a p-nonparabolic Riemannian manifold for some 1 < p < n, with
Ric ≥ 0. Let �⊂ M be a bounded subset with smooth boundary, and let u p be its p-capacitary potential.
Then, there exists a positive constant C such that

|Du p|u
−

n−1
n−p

p ≤ C (2-16)

holds on the whole M ∖�.

Proof. By the C 1-regularity of u p, it clearly suffices to show that (2-16) holds outside some compact
set containing �. Let then o ∈� and R > 0 be such that �⊂ B(o, R), and let x ∈ M ∖ B(o, 4R). With
this choice, we have B(x, 2dg(o, x)− 2R) ⊂ M ∖ B(o, 2R). Thus, applying inequality (2-15) to the
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function u p, on B(x, dg(o, x)− R), we get

|Du p|

u
n−1
n−p
p

(x)≤ C
u p(x)

dg(o, x)− R
u

−
n−1
n−p

p (x)≤ 2C
u

−
p−1
n−p

p (x)
dg(o, x)

and the rightmost-hand side is bounded by means of (2-13). □

2D. Kato-type identity and a warped product splitting theorem. Finally, we give the statement of the
refined Kato-type identity for p-harmonic functions obtained in [Fogagnolo et al. 2019, Proposition 4.4],
which will be at the core of the monotonicity and rigidity of Fβp .

Definition 2.13 (geometry of level sets and orthogonal decomposition). Let (M, g) be a Riemannian
manifold and v be a smooth function on M. At any point where |Dv| ̸= 0 we denote by h and H respectively
the second fundamental form and the mean curvature of the level set of u with respect to the unit normal
Dv/|Dv| and g⊤ the metric induced by g on the level set of u. Finally, for a given differentiable function f ,
we denote by D⊤ f the tangential part of the gradient, according to the orthogonal decomposition

D⊥ f =

〈
D f,

Dv
|Dv|

〉
Dv
|Dv|

and D⊤ f = D f − D⊥ f.

In particular, the following formula holds:

|D|D f ||
2
= |D⊤

|D f ||
2
+ |D⊥

|D f ||
2.

We are now ready to state the Kato-type identity for p-harmonic function.

Proposition 2.14 (Kato-type identity). Let (M, g) be a Riemannian manifold and let v be a p-harmonic
function on some subset of M, p > 1. Then, in an open neighbourhood of a point where |Dv| ̸= 0, the
following identity holds:

|DDv|2 −

(
1 +

(p − 1)2

n − 1

)
|D|Dv||2 = |Dv|2

∣∣∣∣h −
H

n − 1
g⊤

∣∣∣∣2

+

(
1 −

(p − 1)2

n − 1

)
|D⊤

|Dv||2,

according to the notation in Definition 2.13. Moreover, if , for some t0 ∈ R, |Dv|> 0 and∣∣∣∣h −
H

n − 1
g⊤

∣∣∣∣2

= 0, |D⊤
|Dv||2 = 0

hold at each point of {v ≥ t0}, then the Riemannian manifold ({v ≥ t0}, g) is isometric to the warped
product ([t0,+∞)× {v = t0}, dt ⊗ dt + η2(t)g

{v=t0}), where the relation between v, η and t is given by

η(t)=

(
v′(t0)
v′(t)

)p−1
n−1

. (2-17)

3. Monotonicity-rigidity theorems

In this section we are going to prove our monotonicity formulas in the p-nonparabolic setting. The
results we present here are the natural extensions of the ones shown in [Agostiniani and Mazzieri 2020;
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Agostiniani et al. 2020], as well as of the ones obtained in [Fogagnolo et al. 2019; Agostiniani et al.
2022a]. In the first two mentioned papers the authors established the monotonicity in the case of the
harmonic potential, respectively in Rn and in a general 2-nonparabolic manifold with nonnegative Ricci
curvature, whereas an analogous theory has been developed in the case of the p-capacitary potential in the
Euclidean setting in the second two papers. More precisely, in [Fogagnolo et al. 2019], the authors worked
out the smooth computations and took advantage of the fact that the p-capacitary potential associated
with a convex domain is smooth and has no critical points (see [Colesanti et al. 2015; Lewis 1977]),
whereas the main technical achievement in [Agostiniani et al. 2022a] is the treatment of the general case,
when the critical points are present and even possibly arranged in sets of full measure. On the other hand,
the approach presented in that work only produces effective inequalities (1-6), that are anyway sufficient
to prove Theorem 1.1 in the flat setting, as mentioned in the Introduction. Here, we extend these results
to the setting of p-nonparabolic manifolds and we improve them, establishing the full monotonicity of
the integral quantities defined in (3-1) along the p-capacitary level sets flow.

As usual, the main difficulty amounts to ensuring that the monotonicity survives the singular values
of u, that, as far as we know, could even form a set of positive measure. Inspired by the analysis in [Gigli
and Violo 2023], where the authors were forced to face severe technical problems caused by the typical
low regularity of the nonsmooth setting, we compute the derivative of our integral quantities (3-1) in the
distributional sense, appealing to the full strength of the coarea formula in Proposition 2.1, and exploiting
the integrability properties of the p-harmonic functions in Lemma 2.3.

From now on, except where it is necessary, we fix 1 < p < n and we drop the subscript p when we
consider a solution u p to the problem (1-4).

3A. Statement of the monotonicity-rigidity theorems. Let u : M ∖�→ R be a solution of (1-4). For
β ∈ [0,+∞) we consider the function

Fβp (t)= tβ
(n−1)(p−1)
(n−p)

∫
{u=1/t}

|Du|
(β+1)(p−1) dσ (3-1)

defined for every t ≥ 1 such that |{u = 1/t}∩Crit(u)| = 0, which is fulfilled for almost every t ∈ [1,+∞)

by Proposition 2.1. We also set
F∞

p (t)= t
n−1
n−p sup

{u=1/t}
|Du|, (3-2)

which is defined on the whole [1,+∞). If 1/t is a regular value for u, then Fβp is differentiable at t for
every β ∈ [0,+∞) and its derivative is

(Fβp )
′(t)= −βtβ

(n−1)(p−1)
(n−p) −2

∫
{u=1/t}

|Du|
(β+1)(p−1)−1

(
H −

(n − 1)(p − 1)
(n − p)

|D log u|

)
dσ. (3-3)

As said before, the aim of this section is to prove monotonicity-rigidity theorems for t 7→ Fβp (t) and
t 7→ F∞

p (t).

Theorem 3.1 (monotonicity-rigidity theorem for Fβp ). Let (M, g) be a p-nonparabolic Riemannian
manifold with Ric ≥ 0. Let � ⊆ M be a bounded open subset with smooth boundary. Let Fβp be the
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function defined in (3-1) with
n − p

n − 1)(p − 1)
< β <+∞.

Then Fβp belongs to W 2,1(1,+∞) and the identity

(Fβp )
′(t)= −β

(
(n−2)(p−1)
(n−p)

)(β+1)(p−1)∫
{u≤1/t}∖Crit(u)

u2−β
(p−1)(n−1)
(n−p) |Du|

(β+1)(p−1)−1

×

{[
β−

(n−p)
(n−1)(p−1)

][
H−

[
(n−1)(p−1)
(n−p)

]
|Dlogu|

]2

+

∣∣∣∣h−
H

n−1
g⊤

∣∣∣∣2

+(p−1)
[
β+

p−2
p−1

]
|D⊤

|Du||
2

|Du|2
+Ric

(
Du
|Du|

,
Du
|Du|

)}
dµ (3-4)

holds for every t ∈ [1,+∞) and

(Fβp )
′′(t)=β

(
(n−2)(p−1)
(n−p)

)(β+1)(p−1)

tβ
(n−1)(p−1)
(n−p) −2

∫
{u=1/t}

|Du|
(β+1)(p−1)−2

×

{[
β−

(n−p)
(n−1)(p−1)

][
H−

[
(n−1)(p−1)
(n−p)

]
|Dlogu|

]2

+

∣∣∣∣h−
H

n−1
g⊤

∣∣∣∣2

+(p−1)
[
β+

p−2
p−1

]
|D⊤

|Du||
2

|Du|2
+Ric

(
Du
|Du|

,
Du
|Du|

)}
dµ (3-5)

holds for almost every t ∈ [1,+∞). In particular, Fβp admits a convex and monotone nonincreasing C 1

representative. Moreover, (Fβp )′(t0)= 0 at some t0 ≥ 1 such that 1/t0 is a regular value for u if and only
if ({u ≤ 1/t0}, g) is isometric to(

[τ0,+∞)× {u = 1/t0}, dτ ⊗ dτ +

(
τ

τ0

)2

g
{u=1/t0}

)
, where τ0 =

(
|{u = 1/t0}|

AVR(g)|Sn−1|

) 1
n−1

.

In this case {u = 1/t0} is a connected totally umbilical hypersurface with constant mean curvature in
(M ∖�, g).

We also highlight that the rigidity statement is expressed in terms of the derivative. However, if
Fβp (t)= Fβp (T ) for 1 ≤ t < T <+∞ such that 1/t and 1/T are regular values for u, the rigidity statement
still triggers. Indeed, since the set of regular values is open, monotonicity ensures the existence of a
decreasing sequence (t j ) j∈N such that t j → t as j → +∞, 1/t j is regular for u and (Fβp )′(t j )= 0. Since
t 7→ Fβp (t) is smooth in a neighbourhood of t , this implies that (Fβp )′(t) = 0; hence the splitting of
{u ≤ 1/t}.

Theorem 3.2 (monotonicity-rigidity theorem for F∞
p ). Let (M, g) be a p-nonparabolic Riemannian

manifold with Ric ≥ 0. Let � ⊆ M be a bounded open subset with smooth boundary. Let F∞
p be the

function defined in (3-2). Then F∞
p is a continuous monotone nonincreasing function. Furthermore, we
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have [
Hg −

(n − 1)(p − 1)
(n − p)

|D log u|g

]
(xt)= −(p − 1) ∂

∂νt
log

|Du|g

u
n−1
n−p

(xt)≥ 0, (3-6)

where xt ∈ {u = 1/t} is the point where sup{u=1/t}|Du|g/u(n−1)/(n−p) is achieved and νt = −Du/|Du|g is
the unit normal to {u = 1/t}. Moreover, F∞

p (t0)= F∞
p (T ) for some t0 < T or the equality holds in (3-6)

for some t0 such that 1/T and 1/t0 are regular for u if and only if ({u ≤ 1/t0}, g) is isometric to(
[τ0,+∞)× {u = 1/t0}, dτ ⊗ dτ +

(
τ

τ0

)2

g
{u=1/t0}

)
, where τ0 =

(
|{u = 1/t0}|

AVR(g)|Sn−1|

) 1
n−1

.

In this case {u = 1/t0} is a connected totally umbilical hypersurface with constant mean curvature in
(M ∖�, g).

A direct consequence of the monotonicity of F∞
p is the following regularity theorem for the p-capacitary

potential.

Corollary 3.3. The function F∞
p is strictly positive. In particular, every level of u has at least one regular

point.

We want also to emphasise that these theorems can be applied in particular in Rn for every � open
bounded with smooth boundary, where they naturally extend the monotonicity-rigidity theorems in
[Fogagnolo et al. 2019; Agostiniani et al. 2022a].

We conclude this introduction by rewriting the functions Fβp and F∞
p defined in (3-1) and (3-2) in a

different formulation. We make use of this tool only to simplify computations, but as shown in [Agostiniani
and Mazzieri 2020; Fogagnolo et al. 2019; Agostiniani et al. 2022b] monotonicity-rigidity theorems have
their counterpart in this framework. Let (M, g) be a complete p-nonparabolic Riemannian manifold with
Ric ≥ 0 and u : M ∖�→ R be the solution of the problem (1-4). We consider the conformally related
Riemannian manifold (M ∖�, g̃), where g̃ is given by

g̃ = u2( p−1
n−p )g. (3-7)

It is also convenient to consider the new variable

ϕ = −
(p − 1)(n − 2)

(n − p)
log u, (3-8)

so that the metric g̃ can be equivalently rewritten as

g̃ = e−
2ϕ

n−2 g.

With the same formal computation as in [Fogagnolo et al. 2019], one can prove that 1p
g̃ϕ = 0 on

M ∖� where 1p
g̃ is the p-Laplace operator with respect to the metric g̃.

From now on, given (M, g) a p-nonparabolic manifold with Ric ≥ 0 and u a solution to (1-4), ϕ will
be the function obtained by u through (3-8), whereas g̃ will indicate the metric on M ∖� obtained from u
and g through (3-7).
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The gradient of ϕ is related to the one of u by

|∇ϕ|g̃ =
(n − 2)(p − 1)

(n − p)
|Du|g

u
n−1
n−p

, (3-9)

where ∇ is the Levi-Civita connection associated to the metric g̃. We can observe that if t is a regular
value for u then s = −[(p − 1)(n − 2)/(n − p)] log t is a regular value for ϕ, thanks to (3-8) and the
previous relation. Moreover, we recognise from the above expression and the estimate (2-16) that the
fundamental property of |∇ϕ|g̃ is uniformly bounded, that is, there exists a constant C such that

|∇ϕ|g̃ ≤ C (3-10)

on the whole M ∖�.
Using (3-9), the family of functions t 7→ Fβp (t) for β ∈ [0,+∞] defined in (3-1) and (3-2) can be

rewritten in terms of g̃ and ϕ obtained through (3-8) and (3-7). For any β ∈ [0,+∞) we can now consider
the function

8βp(s)=

∫
{ϕ=s}

|∇ϕ|
(β+1)(p−1)
g̃ dσg̃, (3-11)

whenever s ≥ 0 is such that |{ϕ = s} ∩ Crit(ϕ)|. Correspondingly we set

8∞

p (s)= sup
{ϕ=s}

|∇ϕ|g̃, (3-12)

which is defined on the whole [0,+∞). The function 8βp can be obtained from Fβp through a change of
variable, that is,

8βp(s)= Fβp (e
(n−p)

(p−1)(n−2) s).

For β <+∞ it thus holds that

(8βp)
′(s)=

(n − p)
(p − 1)(n − 2)

e
(n−p)

(p−1)(n−2) s(Fβp )
′(e

(n−p)
(p−1)(n−2) s)

for almost every s ∈ [0,+∞). The previous relations reveal how proving the monotonicity results for Fβp
and F∞

p , stated in Theorems 3.1 and 3.2, are equivalent to show the same one for 8βp and 8∞
p . The same

argument applies for the regularity of Fβp .

3B. Proof of monotonicity-rigidity theorems. A basic property we will need is the essential uniform
boundedness of 8βp of 8∞

p defined in (3-11) and (3-12).

Lemma 3.4. Let be 1< p < n, and (M, g) be a p-nonparabolic Riemannian manifold. Let �⊂ M be a
open bounded subset with smooth boundary. For every β ∈ [0,+∞), 8βp is essentially uniformly bounded,
namely 8βp(s) ≤ C for almost every s ∈ [0,+∞), including any s that is regular for ϕ. Moreover, the
function 8∞

p is uniformly bounded.
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Proof. It suffices to write 8βp as

8βp(s)=

∫
{ϕ=s}

|∇ϕ|
(β+1)(p−1)
g̃ dσg̃ ≤ Cβ(p−1)

∫
{ϕ=s}

|∇ϕ|
p−1
g̃ dσg̃

= Cβ(p−1)
[
(n − 2)(p − 1)

(n − p)

]p−1∫
{u=1/t}

|Du|
p−1 dσ,

where C is the constant in (3-10), the last identity is due to (3-9) and (3-8) taking

s = −

[
(p − 1)(n − 2)

n − p

]
log t.

By (2-7) we have that the integral on the rightmost-hand side coincides with Capp(�) for almost any t ,
including any of those such that 1/t is a regular value for u. This settles the boundedness of 8βp for
finite β. On the other hand the uniform boundedness of 8∞

p is a direct consequence of (3-10) alone. □

From now on, we will drop the subscript g̃ whenever it is clear to which metric we are referring.

Suppose by now that β ∈ [0,+∞) and consider the vector field

X = e−
(n−p)

(n−2)(p−1)ϕ|∇ϕ|
p−2(

∇|∇ϕ|
β(p−1)

+ (p − 2)∇⊥
|∇ϕ|

β(p−1)), (3-13)

defined in a neighbourhood of each point such that |∇ϕ|> 0, where the function ϕ is actually smooth,
being p-harmonic with respect to the metric g̃. This vector field is related to the derivative of 8βp through
the following identity.

Proposition 3.5. Let (M, g) be a p-nonparabolic Riemannian manifold with Ric ≥ 0. For every β ∈

[0,+∞), the function s 7→8
β
p(s) defined in (3-11) belongs to W 1,1

loc (0,+∞) and its derivative is given by

e−
(n−p)

(n−2)(p−1) s(8βp)
′(s)=

1
p − 1

∫
{ϕ=s}

〈
X,

∇ϕ

|∇ϕ|

〉
dσ (3-14)

for almost every s ∈ [0,+∞), where X is the vector field defined in (3-13).

Before starting the proof, observe that the quantity appearing in the left-hand side of (3-14) is actually
well-defined for almost every s ∈ (0,+∞) even if X is a priori defined only where |∇ϕ|> 0. Indeed, by
Proposition 2.1 |Critϕ ∩ {ϕ = s}| = 0 for almost every s ∈ (0,+∞).

Proof. By the definition of X , it is easy to check that

e−
(n−p)

(n−2)(p−1)ϕ

〈
|∇ϕ|

p−2
∇|∇ϕ|

β(p−1),
∇ϕ

|∇ϕ|

〉
=

1
p − 1

〈
X,

∇ϕ

|∇ϕ|

〉
holds around each point such that |∇ϕ| ̸= 0. Hence, it remains only to prove that 8βp(s) ∈ W 1,1

loc (0 +∞)

and that

(8βp)
′(s)=

∫
{ϕ=s}

〈
|∇ϕ|

p−2
∇|∇ϕ|

β(p−1),
∇ϕ

|∇ϕ|

〉
dσ
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holds for almost any s ∈ (0,∞). Let η ∈ C ∞
c (0,+∞). Since |∇ϕ| ≤ C by (3-10), applying the coarea

formula (2-2) with f = |∇ϕ|
(β+1)(p−1) and the chain rule we obtain that∫

+∞

0
η′(s)8βp(s) ds =

∫
+∞

0
η′(s)

∫
{ϕ=s}

|∇ϕ|
(β+1)(p−1) dσ ds

=

∫
M∖�

η′(s)⟨∇ϕ,∇ϕ⟩|∇ϕ|
(β+1)(p−1)−1 dµ

=

∫
M∖�

⟨∇(η(ϕ)),∇ϕ⟩|∇ϕ|
(β+1)(p−1)−1 dµ.

Integrating by parts the right-hand side, 1(p)ϕ = 0 yields∫
+∞

0
η′(s)8βp(s) ds = −

∫
M∖�

η(ϕ)⟨|∇ϕ|
p−2

∇|∇ϕ|
β(p−1),∇ϕ⟩ dµ.

Thanks to (3-10) and Lemma 2.3, we are in position to apply the coarea formula in Proposition 2.1 with
f = ⟨|∇ϕ|

p−2
∇|∇ϕ|

β(p−1),∇ϕ⟩/|∇ϕ| (see Remark 2.2) to get∫
+∞

0
η′(s)8βp(s) ds = −

∫ 1

0
η(s)

∫
{ϕ=s}

〈
|∇ϕ|

p−2
∇|∇ϕ|

β(p−1),
∇ϕ

|∇ϕ|

〉
dσ ds,

which ensures both that 8βp ∈ W 1,1
loc (0,+∞) and (3-14). □

The nonnegative divergence of X is what substantially rules the monotonicity of 8βp, and this is true
when β ranges in a suitable set of parameters.

Lemma 3.6 (divergence of X ). Let (M, g) be a p-nonparabolic manifold and X be the vector field defined
in (3-13). Then

div X = e−
(n−p)

(n−2)(p−1)ϕQ

holds at any point such that |∇ϕ|> 0, with

Q =β(p−1)|∇ϕ|
β(p−1)+p−2

{∣∣∣∣h−
H

n−1
g̃⊤

∣∣∣∣2

+(p−1)
[
β+

p−2
p−1

]
|∇

⊤
|∇ϕ||

2

|∇ϕ|2

+(p−1)2
[
β−

(n−p)
(p−1)(n−1)

]
|∇

⊥
|∇ϕ||

2

|∇ϕ|2
+Ricg

(
∇ϕ

|∇ϕ|2
,

∇ϕ

|∇ϕ|2

)}
, (3-15)

where h and H are respectively the second fundamental form and the mean curvature of the level sets of ϕ
with respect to the unit normal ∇ϕ/|∇ϕ|, ∇

⊤ is defined in Definition 2.13 and Ricg denotes the Ricci
tensor of the background metric. In particular,

div(X)≥ 0 for
n − p

(n − 1)(p − 1)
≤ β <+∞.

Proof. The proof follows the same lines of [Agostiniani et al. 2022a, Lemma 4.1], replacing accordingly
the vector fields W = |∇ϕ|

p−2
∇|∇ϕ|

β(p−1) and Z = (p − 2)|∇ϕ|
p−2

∇
⊥
|∇ϕ|

β(p−1). The Ricci curvature
term appears computing the divergence of W thanks to the Bochner identity for p-harmonic functions, as
the reader can see following [Fogagnolo et al. 2019, Proposition 4.3]. □
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Suppose that |∇ϕ| ̸= 0 everywhere. We can apply the divergence theorem in the domain {s < ϕ < S}

to obtain ∫
{ϕ=S}

〈
X,

∇ϕ

|∇ϕ|

〉
dσ −

∫
{ϕ=s}

〈
X,

∇ϕ

|∇ϕ|

〉
dσ =

∫
{s<ϕ<S}

div X dµ≥ 0. (3-16)

Using (3-14) we deduce that

e−
(n−p)

(n−2)(p−1) s(8βp)
′(s)≤ e−

(n−p)
(n−2)(p−1) S

(8βp)
′(S).

This almost concludes the proof of the monotonicity theorem for 8βp with

n − p
(n − 1)(p − 1)

< β <+∞,

assuming the absence of critical points. Indeed, by integrating it, monotonicity will follow as in [Fogagnolo
et al. 2019, Theorem 3.4]. This case lies in the same trail blazed in [Agostiniani and Mazzieri 2020] since
if |∇ϕ| ̸= 0, the p-Laplace operator is elliptic nondegenerate, and thus the techniques used for harmonic
functions fit perfectly.

If we want to pursue the previous path, even when the critical set of ϕ is not empty, we are first
committed to providing a version of (3-16) that holds even in presence of critical values. The main
issue is that div(X) does not belong to L1

loc a priori. Following the same lines of [Gigli and Violo 2023,
Proposition 4.6], testing s 7→ e−s(n−p)/((n−2)(p−1))(8

β
p)

′(s) against nonnegative functions η∈C ∞
c (0,+∞)

and using the coarea formula Proposition 2.1 for f = ⟨X,∇ϕ/|∇ϕ|⟩(1 −χCritϕ), one gets

(p − 1)
∫

+∞

0
η′(s)e−

(n−p)
(n−2)(p−1) s(8βp)

′(s) ds =

∫
M∖Crit(ϕ)

⟨X,∇[η(ϕ)]⟩ dµ.

We now would like to integrate by parts and use the nonnegativity of div(X) outside the critical set of ϕ.
In doing this, we are hampered by the fact that div(χM∖CritϕX) is actually a measure that is possibly
not absolutely continuous. Hence we can aim to prove that s 7→ e−s(n−p)/((n−2)(p−1))(8

β
p)

′(s) belongs to
BVloc(0,+∞), but not the absolute continuity. Differently from the nonsmooth case, we can here employ
the higher regularity of ϕ outside its critical set to refine the result.

Proposition 3.7. Let (M, g) be a p-nonparabolic Riemannian manifold with Ric ≥ 0. Let �⊆ M be an
open bounded subset with smooth boundary. For every

n − p
(n − 1)(p − 1)

< β <+∞,

the function s 7→e−s(n−p)/((n−2)(p−1))(8
β
p)

′(s) defined in (3-14) belongs to W 1,1
loc (0,+∞) and its derivative

is given by

(e−
(n−p)

(n−2)(p−1) s(8βp)
′(s))′ =

1
p − 1

∫
{ϕ=s}

div X
|∇ϕ|

dσ (3-17)

for almost every s ∈ [0,+∞), where X is the vector field defined in (3-13).

We remark again that the quantity appearing in the left-hand side of (3-17) is actually well-defined for
almost every s ∈ (0,+∞) even if X is a priori defined only where |∇ϕ|> 0. Indeed, by Proposition 2.1
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|Critϕ ∩ {ϕ = s}| = 0 for almost every s ∈ (0,+∞). Moreover, since ϕ ∈ C ∞ around each point where
|∇ϕ|> 0, the field X is smooth around such points; thus its divergence can be classically computed.

Proof. Proposition 3.7 follows if we prove that div(X)(1 −χCrit(ϕ)) belongs to L1
loc(M ∖�) and

(p − 1)
∫

+∞

0
η′(s)e−

(n−p)
(n−2)(p−1) s(8βp)

′(s) ds = −

∫
M∖Critϕ

η(ϕ) div X dµ (3-18)

holds for every η∈C ∞
c (0,+∞). By the coarea formula in Proposition 2.1, with f = div(X)(1−χCrit(ϕ)),

we would get ∫
M∖Critϕ

η(ϕ) div X dµ=

∫
+∞

0
η(s)

∫
{ϕ=s}

div X
|∇ϕ|

dσ dt,

which implies both that e−(n−p)s/(n−2)(p−1)(8
β
p)

′
∈ W 1,1

loc (0,+∞) and (3-17).

Step 1: proof for nonnegative η. Let η ∈ C ∞
c (0,+∞) be nonnegative. For any given ε > 0 consider the

smooth nonnegative cut-off function χε : [0,+∞)→ R defined as
χε(t)= 0 in t < 1

2ε,

0< χ ′
ε(t)≤ 2ε−1 in 1

2ε ≤ t ≤
3
2ε,

χε(t)= 1 in t > 3
2ε.

Consider accordingly the vector field Xε = χε(|∇ϕ|
β(p−1))X , where X is the vector field given in (3-13).

Let η ∈ C ∞
c (0,+∞) be nonnegative. We notice that |⟨Xε,∇ϕ⟩| ≤ |⟨X,∇ϕ⟩| which is in L2

loc(M ∖�) by
(3-10) and Lemma 2.3. Hence (3-14), the coarea formula with f = η′(ϕ)⟨X,∇ϕ/|∇ϕ|⟩ and the dominated
convergence theorem imply∫

+∞

0
η′(s)e−

(n−p)
(n−2)(p−1) s(8βp)

′(s) ds = lim
ε→0+

1
p − 1

∫
M
η′(ϕ)⟨Xε,∇ϕ⟩ dµ.

Employing the coarea formula in (2-2) with f = ⟨Xε,∇ϕ/|∇ϕ|⟩ and integration by parts, we obtain that∫
+∞

0
η′(s)

∫
{ϕ=s}

〈
Xε,

∇ϕ

|∇ϕ|

〉
dσ ds

=

∫
M
η′(ϕ)⟨Xε,∇ϕ⟩ dµ= −

∫
M

div(Xε)η(ϕ) dµ

= −

∫
M∖Nε/2

η(ϕ)χε(|∇ϕ|
β(p−1)) div X dµ−

∫
N3ε/2∖Nε/2

η(ϕ)χ ′

ε(|∇ϕ|
β(p−1))⟨X,∇|∇ϕ|

β(p−1)
⟩ dµ,

where Nδ = {|∇ϕ|
β(p−1) < δ} for every δ > 0. By the monotone convergence theorem, the first integral

in the rightmost-hand side gives

lim
ε→0+

∫
M∖Nε/2

η(ϕ)χε(|∇ϕ|
β(p−1)) div X dµ=

∫
M∖Crit(ϕ)

η(ϕ) div X dµ≥ 0.

To achieve Step 1, it thus remains to prove that the second integral vanishes as ε→ 0+. Observe that
the integral in question is always nonnegative, as ⟨X,∇|∇ϕ|

β(p−1)
⟩ ≥ 0, η ≥ 0 and χ ′

ε ≥ 0. Hence, we
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only need to estimate it from above with a quantity that vanishes as ε→ 0+. Since |∇ϕ|
β(p−1)

≥ ε/2 on
N3ε/2∖Nε/2, ϕ is smooth in such a region. The coarea formula in Proposition 2.1 and χ ′

ε ≤ 2/ε would give∫
N3ε/2∖Nε/2

η(ϕ)χ ′

ε(|∇ϕ|
β(p−1))⟨X,∇|∇ϕ|

β(p−1)
⟩dµ≤

2
ε

∫ 3ε/2

ε/2

∫
∂Ns

⟨η(ϕ)X,∇|∇ϕ|
β(p−1)

⟩

|∇|∇ϕ|β(p−1)|
dσ ds. (3-19)

However, to apply Proposition 2.1 without further specifications, the set N3ε/2∖Nε/2 should be compactly
contained in M ∖� for every ε > 0 small enough. Since |∇ϕ| > 0 on ∂� and ϕ ∈ C

1,β
loc (M ∖�), it is

clear that the set N3ε/2 ∖ Nε/2 does not touch ∂�. Nonetheless, it could be unbounded. This is not a real
issue since we are integrating η(ϕ), which has compact support. More rigorously, choose S > 0 such that
η(s)= 0 for every s ≥ S. Let ξ : R → [0, 1] be a smooth cut-off function such that ξ = 1 on [0, S] and
ξ = 0 on [2S,+∞). Observe that the function ξ(ϕ)|∇ϕ|

β(p−1)
+ (1 − ξ(ϕ)) is smooth outside Critϕ, its

sublevels Ñδ are compact for δ < 1 and its gradient coincides with ∇|∇ϕ|
β(p−1) on the support of η(ϕ).

Moreover, one can replace Nδ with Ñδ in both sides of (3-19) without changing the value of the integrals.
Indeed, such sets coincide on the support of η(ϕ), where integrations are actually performed. Hence,
(3-19) holds. Up to the end of this step, we will implicitly use this truncation argument when the coarea
formula is applied.

Let 0< R < 1 be a regular value for |∇ϕ|. Define H as

H(r)=

∫
∂Nr

⟨η(ϕ)X,∇|∇ϕ|
β(p−1)

⟩

|∇|∇ϕ|β(p−1)|
dσ ≥ 0

for every r ∈ (0, R) that is a regular value of |∇ϕ|, hence for almost every r ∈ (0, R) thanks to Sard’s
theorem applied to the smooth function |∇ϕ|. We claim that H(r) vanishes as r → 0+. This is enough
for Step 1, since it would give

2
ε

∫ 3ε/2

ε/2

∫
∂Ns

⟨η(ϕ)X,∇|∇ϕ|
β(p−1)

⟩

|∇|∇ϕ|β(p−1)|
dσ ds ≤ 2 sup

r∈[ ε2 ,
3ε
2 ]

H(r)→ 0

as ε→ 0+.
Let 0 < t < r < R be two regular values for |∇ϕ|, applying the divergence theorem to the smooth

vector field X on Nr ∖ Nt we get

H(r)−H(t)=

∫
∂Nr

⟨η(ϕ)X,∇|∇ϕ|
β(p−1)

⟩

|∇|∇ϕ|β(p−1)|
dσ −

∫
∂Nt

⟨η(ϕ)X,∇|∇ϕ|
β(p−1)

⟩

|∇|∇ϕ|β(p−1)|
dσ

=

∫
Nr∖Nt

div(η(ϕ)X) dµ=

∫
Nr∖Nt

η(ϕ) div(X) dµ+

∫
Nr∖Nt

⟨X,∇ϕ⟩η′(ϕ) dµ. (3-20)

Since Ric ≥ 0 and

|∇ϕ|
2
∣∣∣∣h −

H
n − 1

g⊤

∣∣∣∣2

≥ 0,
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by (3-15) we have that

div X ≥ β(p − 1)2e−
(n−p)

(p−1)(n−2)ϕ|∇ϕ|
β(p−1)+p−4

×

([
β +

p − 2
p − 1

]
|∇

⊤
|∇ϕ||

2
+ (p − 1)

[
β −

(n − p)
(p − 1)(n − 1)

]
|∇

⊥
|∇ϕ||

2
)

≥ Cβ2 p(p − 1)2e−
(n−p)

(p−1)(n−2)ϕ|∇ϕ|
β(p−1)+p−4(|∇⊥

|∇ϕ||
2
+ |∇

⊤
|∇ϕ||

2)

≥ C p e−
(n−p)

(p−1)(n−2)ϕ
|∇ϕ|

p−2
|∇|∇ϕ|

β(p−1)
|
2

|∇ϕ|β(p−1) ≥ C
⟨X,∇|∇ϕ|

β(p−1)
⟩

|∇ϕ|β(p−1) ,

where

C =
1
pβ

min
{[
β +

p − 2
p − 1

]
, (p − 1)

[
β −

(n − p)
(p − 1)(n − 1)

]}
> 0.

If we plug the above estimate into (3-20) and use the coarea formula in Proposition 2.1 with f =

|∇ϕ|
−β(p−1)+p−2

∣∣∇|∇ϕ|
β(p−1)

∣∣, we get

H(r)−H(t)−
∫

Nr∖Nt

⟨X,∇ϕ⟩η′(ϕ) dµ≥ C
∫ r

t

H(s)
s

ds. (3-21)

On the other hand, the map

t 7→ G(t)=

∫
Nt∖Critϕ

⟨X,∇ϕ⟩η′(ϕ) dµ

is a well-defined bounded function in C 0([0, R]). Indeed, η′(ϕ) has compact support and

|⟨X,∇ϕ⟩| ≤ β(p − 1)|∇ϕ|
β(p−1)

|∇|∇ϕ|
p−1

| ∈ L2
loc(NR ∖Critϕ)

by Lemma 2.3. Equation (3-21) states that t 7→H(t)−G(t) is monotonically increasing, whereas H(s)≥ 0
for almost every s ∈ (0, r). Thus, t 7→ H(t) = H(t)− G(t)+ G(t) admits a limit as t → 0+, being the
sum of a monotone and a continuous function. Denote by H(0) such a limit. Since G(t)→ 0 as t → 0+,
by dominated convergence theorem and H(0)≥ 0, we have

H(R)−G(R)≥ [H(R)−G(R)] − [H(0)−G(0)] ≥ C
∫ R

0

H(s)
s

ds.

Hence H(s)→ 0 as s → 0+; otherwise H(s)/s would not belong to L1(0, R), contradicting the bound-
edness of H(R)−G(R).

Step 2: conclusions. In the previous step we proved (3-18) for every nonnegative function η∈C ∞
c (0,+∞).

Let be K ⊂ M ∖�. Then, there exists an ηK ∈ C ∞
c (0,+∞), ηK ≥ 0, such that ηK (ϕ) ≥ 1 on K . In

particular, since div(X)≥ 0 outside Crit(ϕ) we have∫
K

div(X)(1 −χCrit(ϕ)) dµ≤

∫
M∖Crit(ϕ)

ηK (ϕ) div(X) dµ

= −(p − 1)
∫

+∞

0
η′

K (s)e
−

(n−p)
(n−2)(p−1) s(8βp)

′(s) ds,
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which is finite thanks to Proposition 3.5. This ensures that div(X)(1 −χCrit(ϕ)) belongs to L1
loc(M ∖�).

Approximating the positive and the negative part of a general η ∈ C ∞
c (0,+∞), that are nonnegative

Lipschitz with compact support, we can conclude. □

Proof of Theorem 3.1. We use an argument due to [Colding and Minicozzi 2014a]. By Propositions 3.7
and 3.5, 8βp is W 2,1

loc (0,+∞). By (3-17), s 7→ e−s(n−p)/((n−2)(p−1))(8
β
p)

′(s) is nondecreasing. Then for
every 0 ≤ s < S <+∞ we have

e
(n−p)

(n−2)(p−1) (S−s)
(8βp)

′(s)≤ (8βp)
′(S).

Integrating the above inequality, we get

(n − 2)(p − 1)
(n − p)

(e
(n−p)

(n−2)(p−1) (S−s)
− 1)(8βp)

′(s)≤8βp(S)−8
β
p(s) (3-22)

for every 0 ≤ s < S <+∞. Suppose, by contradiction, that (8βp)′(s) > 0 for some s ∈ [0,+∞). Passing
to the limit as S → +∞ in (3-22) we would get that 8βp(S)→ +∞ against the boundedness property
ensured by Lemma 3.4. Hence, (8βp)′(s)≤ 0 and in particular s 7→8

β
p(s) is nonincreasing. Notice that

8
β
p is a bounded, nonincreasing C 1(0,+∞) function. Then (8βp)′(s)→ 0 as s → +∞. Coupling this

with the coarea formula in Proposition 2.1 for f = div(X)(1 −χCrit(ϕ))/|∇ϕ| one gets that

e−
(n−p)

(n−2)(p−1) s(8βp)
′(s)= lim

S→+∞

e−
(n−p)

(n−2)(p−1) s(8βp)
′(s)− e−

(n−p)
(n−2)(p−1) S

(8βp)
′(S)

= lim
S→+∞

−

∫
{s≤ϕ≤S}∖Crit(ϕ)

div X dµ= −

∫
{ϕ≥s}∖Crit(ϕ)

div X dµ (3-23)

for almost every s ∈ [0,+∞), which also ensures that div X ∈ L1(M ∖ (�∪ Crit(ϕ))). We also observe
that (3-23) holds actually for every s ∈ [0,+∞) and this is why (3-4) is in turn true for every t ∈ [1,∞).
Indeed, the left-hand side is continuous by the statement. By the locality of the gradient, {ϕ = s} ∩ Critϕ
is negligible with respect to the volume measure µ, since ϕ is a C 1,β function. The integration in (3-23)
can be thus performed on {ϕ > s} ∩ Critϕ. This shows that the right-hand side is right-continuous (hence
continuous) by the monotone convergence theorem.

One can now obtain (3-4) rewriting (3-23) in terms of u. The proof proceeds through direct computations.
The main ones are contained in [Fogagnolo et al. 2019, Section 3.3], the only difference is the Ricci term
that can be computed as

Ric(∇ϕ,∇ϕ)=

[
(p − 1)(n − 2)

(n − p)

]2

u−2 n+p−2
n−p Ric(Du,Du).

Consequently, (3-5) follows by (3-4) and coarea formula.
For the rigidity statement, suppose that (Fβp )′(t0)= 0 for some t0 ∈ [1,+∞) regular for u. Then by (3-4)∣∣∣∣h −

H
n − 1

g⊤

∣∣∣∣
g
= 0 and |D⊤

|Du|g|g = 0

hold on {u ≤ 1/t0}∖Crit(u). By Proposition 2.14, ({u ≤ 1/t0}, g) splits to a warped product near the
level set {u = 1/t0}. In particular, the mean curvature H depends only on u. By (3-3) also |Du| depends
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only on u and
∂

∂u
|Du|g =

H
p − 1

=
n − 1
n − p

|Du|g

u
.

Integrating it, we get that for some A(t0) > 0 the identity

|Du|g = u
n−1
p−1 A(t0)

holds, which gives that |Du|g never vanishes on {u ≤ 1/t0} by the continuity of gradient. Recalling the
relation between u, η and t in (2-17), we obtain that η(t)= B(t0)t0t + (1 − B(t0)) for some B(t0) > 0.
If we define the new coordinate as

τ = t +
1 − B(t0)

B(t0)t0
and τ0 =

1
t0(B(t0)− 1)

,

we have that {τ ≥ τ0} = {u ≤ 1/t0}, η(t) = τ/τ0 and dτ = − dt . To sum up, we have proven that
({u ≤ 1/t0}, g) is isometric to(

[τ0,+∞)× {u = 1/t0}, dτ ⊗ dτ +

(
τ

τ0

)2

g{u=1/t0}

)
,

leaving us only to characterise τ0. Observe that, by the conical splitting, the measures of the level sets
of τ satisfy

|{τ = R}| =

(
R
τ0

)n−1

|{u = 1/t0}|.

One can easily prove that on a cone

1 = lim
R→+∞

|{τ ≤ R}|

|B(o, R)|
= lim

R→+∞

|{τ = R}|

|∂B(o, R)|
,

which can be used to compute the claimed value of τ0,

AVR(g)= lim
R→+∞

|{τ = R}|

Rn−1|Sn−1|
=

|{u = 1/t0}|

τ n−1
0 |Sn−1|

. □

We conclude this section by sketching the proof of the monotonicity-rigidity theorem for 8∞
p , which

does not require much more effort than in Rn [Fogagnolo et al. 2019].

Proof of Theorem 3.2. Lemma 5.1 in [Fogagnolo et al. 2019] holds also in this setting. The only difference
in proving that |∇ϕ|

p is a subsolution of the nondegenerate uniformly elliptic operator

L ( f )=1 f + (p − 2)∇∇ f
(

∇ϕ

|∇ϕ|
,

∇ϕ

|∇ϕ|

)
−

n − p
n − 2

⟨∇ f,∇ϕ⟩,

acting on smooth f in a neighbourhood of points such that |∇ϕ|> 0, is that the curvature term that appears
when the Bochner identity for p-harmonic functions is applied can be controlled by Ric ≥ 0. We claim that

|∇ϕ|(x)≤ sup
{ϕ=s}

|∇ϕ| (3-24)
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for every s ∈ [0,+∞) and x ∈ {ϕ ≥ s}, which is the main ingredient in the proof of [Fogagnolo et al.
2019, Theorem 3.5]. Firstly suppose that 8∞

p (s) > 0 and let be 0 < δ < 8∞
p (s). By (3-10), |∇ϕ| ≤ C

uniformly in M ∖�. For some S > s let

w = |∇ϕ|
p
− sup

{ϕ=s}
|∇ϕ|

p
− Cpe

n−p
(n−2)(p−1) (ϕ−S)

be defined on {s ≤ ϕ≤ S}∖Nδ , where Nδ = {|∇ϕ|<δ}. Since w≤ 0 on the boundary of {s ≤ ϕ≤ S}∖Nδ
and L (w)≥ 0 in its interior, by the maximum principle we have that

|∇ϕ|
p
≤ sup

{ϕ=s}
|∇ϕ|

p
+ Cpe

n−p
(n−2)(p−1) (ϕ−S) (3-25)

on {s ≤ ϕ ≤ S}∖ Nδ . Moreover, since |∇ϕ|< δ on Nδ , (3-25) is thus satisfied in the whole {s ≤ ϕ ≤ S}.
Passing to the limit as S → +∞, (3-24) is proven for s ∈ [0,+∞) such that 8∞

p (s) > 0.
We now prove Corollary 3.3, namely that 8βp(s) > 0 for every s ∈ [0,+∞), which in particular yields

(3-24) proving the monotonicity. Suppose by contradiction that 8∞
p (s)= 0 for some s ∈ [0,+∞). By

Proposition 2.1 there exists a sequence of (s j ) j∈N, s j → s as j → +∞ and 8∞
p (s j ) > 0. If, up to

a subsequence, we can assume that 8∞
p (s j ) → 0, then we can conclude. Indeed, 8∞

p (s j ) ≥ |∇ϕ|(x)
for every x ∈ {ϕ ≥ s} and 8∞

p (s j ) → 0 as j → +∞; hence |∇ϕ| = 0 on {ϕ ≥ s}, contradicting the
unboundedness of ϕ. Suppose now that every subsequence of 8∞

p (s j ) does not vanish. Then there would
be a δ > 0 and J ∈ N such that 8∞

p (s j ) > δ for every j ≥ J. Since level sets of ϕ are compact, 8βp(s j )

is actually achieved at some point xs j ∈ {ϕ = s j }. Moreover, (xs j ) j∈N is bounded, since it is contained
in {ϕ ≤ s}. Hence, we can assume that there exists x ∈ {ϕ ≤ s} such that xs j → x as j → +∞. Since
ϕ is C 1, we obtain that ϕ(x)= s and |∇ϕ|(x)≥ δ, contradicting the fact that 8∞

p (s)= 0.
Using a similar argument we can infer that s 7→8

β
p(s) is left continuous. Indeed, by contradiction there

would be a δ>0 such that8∞
p (s)≥8

∞
p (s0)+δ for any s< s0. Let xs ∈{ϕ= s} such that8∞

p (s)=|∇ϕ|(xs).
By the compactness of {ϕ ≤ s0}, there exists a sequence (s j ) j∈N and a point x ∈ {ϕ ≤ s0} such that
s j < s0, s j → s0 and xs j → x . Since ϕ ∈ C 1, we have ϕ(x)= s0 and |∇ϕ|(x)≥8∞

p (s0)+δ, contradicting
the definition of 8∞

p . To prove the right continuity it is the enough to prove that s 7→8∞
p (s) is lower

semicontinuous. Since 8∞
p > 0, the maximum of |∇ϕ| on {ϕ = s} is achieved at a regular point x . Let

(s j ) j∈N be a sequence such that s j → s as j → +∞. Seeing as |∇ϕ| is continuous, there exists a sequence
of points (xs j ) j∈N such that xs j ∈ {ϕ = s j } and xs j → x as j → +∞. Since |∇ϕ|(xs j ) ≤ 8∞

p (s j ) for
every j ∈ N, we complete the proof.

We turn to prove the second part of Theorem 3.2. Since xt is a point of maximum for the function
|Du|g/u(n−1)/(n−p) on {u ≤ 1/t}, its derivative with respect to the normal unit vector νt = −Du/|Du|g is
nonpositive. Hence (3-6) follows by direct computations. To conclude, both rigidity statements follow in
the same way as in [Fogagnolo et al. 2019, Theorem 3.5], since |Du|

p
g/u p(n−1)/(n−p) is also a subsolution

of L f = 0, thanks to (3-9). □

4. Geometric consequences of the monotonicity theorems

In this section, we prove the geometric implications of the monotonicity-rigidity theorems, which are
the Minkowski inequalities, a rigidity result under a pinching condition and a sphere theorem. The proof
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of these theorems follows, along with the monotonicity already mentioned, by a contradiction argument
that involves the iso-p-capacitary inequality, which we are going to state and prove immediately since
we believe it to be of independent interest.

4A. Iso- p-capacitary inequality. We provide the sharp iso-p-capacitary inequality in complete noncom-
pact Riemannian manifolds with nonnegative Ricci curvature and Euclidean volume growth. As for the
standard iso-p-capacitary inequality in the Euclidean setting, the proof fully relies on the isoperimetric
inequality combined with a Pólya–Szegő principle. In particular, the sharpness of the inequality that
follows is a direct consequence of the sharp isoperimetric constant in this setting, which has been found
first in dimension 3 in [Agostiniani et al. 2020] and later extended to all dimensions in [Brendle 2023]. See
also [Fogagnolo and Mazzieri 2022; Balogh and Kristály 2023; Johne 2021] for related results. The proof
below is classical, and it is inspired by [Jauregui 2012], where it is illustrated for the 2-capacity in Rn.

Theorem 4.1 (iso-p-capacitary inequality). Let (M, g) be a complete, noncompact Riemannian manifold
with nonnegative Ricci curvature and Euclidean volume growth. Let be �⊆ M open bounded subset with
smooth boundary. Then

Capp(B
n)n

|Bn|n−p AVR(g)p
≤

Capp(�)
n

|�|n−p . (4-1)

Moreover, if the equality holds then (M, g) is isometric to the Euclidean space and � is a ball.

Proof. By (2-6) and the coarea formula in Proposition 2.1 we have that

Capp(�)=

∫
M∖�

|Du|
p dµ=

∫ 1

0

∫
{u=τ }

|Du|
p−1 dσ dτ. (4-2)

The Hölder inequality with exponents a = p and b = p/(p − 1) gives

|{u = τ }|p
≤

(∫
{u=τ }

|Du|
p−1 dσ

)(∫
{u=τ }

1
|Du|

dσ
)p−1

(4-3)

for almost every τ ∈ (0, 1]. Let V ′
: (0, 1] → R be defined as

V ′(τ )= −

∫
{u=τ }

1
|Du|

dσ. (4-4)

Moreover, let V : (0, 1] → R be the primitive of V ′(τ ) chosen as

V (τ )= |�| −

∫ 1

τ

V ′(s) ds = |�τ ∖Crit(u)|, (4-5)

where the second identity is obtained coupling (4-4) with the coarea formula (2-2) applied with f =

(1 −χCrit(u))|Du|
−1 (see Remark 2.2).

By the isoperimetric inequality in [Brendle 2023, Corollary 1.3] we have that

|{u = τ }| ≥ |∂�τ | ≥ |�τ |
n−1

n AVR(g)
1
n n|Bn

|
1
n ≥ V (τ )

n−1
n AVR(g)

1
n n|Bn

|
1
n . (4-6)
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Let R(τ ) be the radius of the ball in Rn which has volume V (τ ). Then V (τ ) = |Bn
|R(τ )n and

V ′(τ )= |Sn−1
|R(τ )n−1 R′(τ ). Coupling (4-6) with (4-2), (4-3) and (4-4) we obtain

Capp(�)≥

∫ 1

0

|{u = τ }|p

[−V ′(τ )]p−1 dτ ≥ n p(|Bn
| AVR(g))

p
n

∫ 1

0

V (τ )
p(n−1)

n

[−V ′(τ )]p−1 dτ

= |Sn−1
| AVR(g)

p
n

∫ 1

0

R(τ )n−1

[−R′(τ )]p−1 dτ.

Let now v : {|x | ≥ R(1)} ⊂ Rn
→ (0, 1] be the function which is τ on {|x | = R(τ )}. By (4-6) and (2-16)

there exists a positive constant C = C(p, n) such that

−V ′(τ )=

∫
{u=τ }

1
|Du|

dσ ≥ C|�|
n−1

n τ
n−p
p−1 .

Seeing as

|Dv| = −
1

R′(τ )
= −|Sn−1

|
Rn−1(τ )

V ′(τ )
,

the function v is locally Lipschitz. Since |Sn−1
|R(τ )n−1

= |{|x | = R(τ )}| = |{v = τ }|, by the coarea
formula (2-2) applied with f = |Dv|p−1(see Remark 2.2) we have

|Sn−1
| AVR(g)

p
n

∫ 1

0

R(τ )n−1

[−R′(τ )]p−1 dτ = AVR(g)
p
n

∫ 1

0

∫
{v=τ }

|Dv|p−1 dσ dτ

= AVR(g)
p
n

∫
{|x |≥R(1)}

|Dv|p dx ≥ AVR(g)
p
n Capp({|x |< R(1)}),

where the last one is by the definition of the p-capacity (2-4) in flat Rn . Using (2-9) and the fact that
|{|x | ≤ R(1)}| = V (1)= |�|, we finally obtain

AVR(g)
p
n Capp({|x |< R(1)})= AVR(g)

p
n Capp(B

n)R(1)n−p
= AVR(g)

p
n

Capp(B
n)

|Bn|
n−p

n

|�|
n−p

n ,

and consequently (4-1).
Clearly, if the equality holds in (4-1) then also the equality holds in the use of the isoperimetric

inequality, and [Brendle 2023, Theorem 1.2] forces the rigidity both of the ambient manifold and �. □

We conclude this subsection with the following remark, whose importance will be clarified in the
very proof of the L p-Minkowski inequality (Theorem 4.3 below), where a sharp lower bound for the
p-capacity of the superlevel sets of the p-capacitary potential of � will be needed.

Remark 4.2. We observe that, replacing � and u with �t = {u > 1/t} ∪� and ut = tu respectively and
defining V : (0, 1] → R in (4-5) as

V (τ )= |�t ∪ {ut = 1}| +

∫ 1

τ

∫
{ut=s}

1
|Dut |

dσ ds = |�τ/t ∖ (Crit(u)∩ {τ < ut < 1})|,

we obtain that
Capp(B

n)n

|Bn|n−p AVR(g)p
≤

Capp(�t)
n

|�t |
n−p

holds for every t ∈ [1,+∞).
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4B. Minkowski inequality. We are now ready to prove the L p-Minkowski inequality in our setting. Let
(M, g) be a noncompact, complete Riemannian manifold with Ric ≥ 0 and Euclidean volume growth.
Consider the function t 7→ Fp(t) defined in (3-1) as Fβp with β = 1/(p − 1). By (2-9) we can rewrite
Fp in a more geometric fashion as

Fp(t)= t
n−1
n−p

∫
{u=1/t}

|Du|
p dσ =

(
Cp(�t)

Cp(�)

)−
n−p−1

n−p
∫

{ut=1}

|Dut |
p dσ, (4-7)

where ut = tu and �t = {u > 1/t} ∪�.

Theorem 4.3 (L p-Minkowski inequality). Let (M, g) be complete Riemannian manifold with Ric ≥ 0
and Euclidean volume growth. Let �⊆ M be a open bounded subset with smooth boundary. Then, for
every 1< p < n, the following inequality holds:

Cp(�)
n−p−1

n−p AVR(g)
1

n−p ≤
1

|Sn−1|

∫
∂�

∣∣∣∣ H
n − 1

∣∣∣∣p

dσ. (4-8)

Moreover, the equality holds in (4-8) if and only if (M ∖�, g) is isometric to(
[ρ0,+∞)× ∂�, dρ⊗ dρ+

(
ρ

ρ0

)2

g∂�

)
, where ρ0 =

(
|∂�|

AVR(g)|Sn−1|

) 1
n−1

.

Proof. We first show that

Cp(�)
n−p−1

n−p AVR(g)
1

n−p ≤
1

|Sn−1|

(
p − 1
n − p

)p ∫
∂�

|Du|
p dσ (4-9)

holds for any open subset �⊆ M with smooth boundary.
Let then θ < AVR(g) and suppose by contradiction that there exists an open subset � ⊆ M with

smooth boundary such that

Cp(�)
n−p−1

n−p θ
1

n−p ≥
1

|Sn−1|

(
p − 1
n − p

)p ∫
∂�

|Du|
p dσ.

Define τ = 1/t ∈ (0, 1]. By Theorem 3.1, the function τ 7→ Fp(τ ) is nondecreasing for τ ∈ (0, 1].
Exploiting this monotonicity as in (4-7) we have(

n − p
p − 1

)p

|Sn−1
|θ

1
n−p ≥ Cp(�)

−
n−p−1

n−p

∫
∂�

|Du|
p dσ ≥ Cp(�τ )

−
n−p−1

n−p

∫
{u=τ }

|Duτ |p dσ, (4-10)

where uτ = u/τ . The Hölder inequality with conjugate exponents a = (p + 1)/p and b = p + 1 yields

Capp(�τ )
p+1

p ≤

(∫
{u=τ }

|Duτ |p dσ
)(∫

{u=τ }

1
|Duτ |

dσ
)1

p

.

Therefore, plugging it into (4-10), we get

|Sn−1
|Cp(�τ )

n
n−p ≤

(
n − p
p − 1

)
θ

p
n−p

∫
{u=τ }

1
|Duτ |

dσ.
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Using (2-9) and integrating both sides we obtain

|Sn−1
|Cp(�)

n
n−p

∫ 1

τ

s−
n(p−1)

n−p −1 ds ≤

(
n − p
p − 1

)
θ

p
n−p

∫ 1

τ

∫
{u=s}

1
|Du|

dσ ds,

which, together with the coarea formula (2-2) with f = (1−χCrit(u))|Du|
−1 (see Remark 2.2), leaves us with

|Sn−1
|

n
(Cp(�τ )

n
n−p − Cp(�)

n
n−p )≤ θ

p
n−p |�τ ∖ (�∪ Crit(u))|

for every τ ∈ [0, 1). Applying the sharp iso-p-capacitary inequality (4-1) to the left-hand side we obtain

AVR(g)
p

n−p (|�τ | − Cp(�)
n

n−p )≤ θ
p

n−p |�τ |.

Dividing both sides by |�τ | and passing to the limit as τ → 0, we get a contradiction with θ < AVR(g),
proving that for any θ < AVR(g)

Cp(�)
n−p−1

n−p θ
1

n−p <
1

|Sn−1|

(
p − 1
n − p

)p ∫
∂�

|Du|
p dσ

holds for every any bounded open �⊂ M with smooth boundary. Letting θ → AVR(g)− yields (4-9).
To conclude observe that Theorem 3.1 implies (Fp)

′(1)≤ 0 and thus, thanks to (3-3), we have∫
∂�

(
p − 1
n − p

)
|Du|

p dσ ≤

∫
∂�

|Du|
p−1 H

n − 1
dσ.

By the Hölder inequality with conjugate exponents a = p/(p − 1) and b = p, we get∫
∂�

|Du|
p dσ ≤

(
n − p
p − 1

)p ∫
∂�

∣∣∣∣ H
n − 1

∣∣∣∣p

dσ, (4-11)

which coupled with (4-9) concludes the proof of (4-8).

If we now assume that the equality holds in (4-8), then the two sides of (4-11) are identical too. In
particular, by (3-3), F ′

p(1)= 0 and the rigidity statement in Theorem 3.1 applies. □

Remark 4.4 (a sharp bound on Fβp and other geometric inequalities). The previous proof combines a
lower bound on Fp(+∞) with F ′

p(1)≤ 0. Such an argument can be generalised for every

β ≥
n − p

(n − 1)(p − 1)
.

In fact, with a similar reasoning one can get

lim
t→+∞

Fβp (t)≥

(
n − p
p − 1

)β(p−1)

Cp(∂�)
1−β

p−1
n−p AVR(g)β

p−1
n−p ,

and couple it with (Fβp )′(1)≤ 0 to obtain the family of inequalities

Cp(∂�)
1−β

p−1
n−p AVR(g)β

p−1
n−p ≤

1
|Sn−1|

∫
∂�

∣∣∣∣ H
n − 1

∣∣∣∣(β+1)(p−1)

dσ
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depending on parameters

β ≥
n − p

(n − 1)(p − 1)
and 1< p < n

(see [Benatti 2022, Theorem 4.2.1] and its proof for the details). Among them, we have the above-
mentioned L p-Minkowski inequality for β = 1/(p − 1) and the Willmore-type inequality proved in
[Agostiniani et al. 2020, Theorem 1.1] for β = (n − p)/(p − 1).

In order to derive the extended Minkowski inequality we want to briefly recall the definition of outward
minimising sets and the notion of strictly outward minimising hull in accordance to [Huisken and Ilmanen
2001] and some related properties that the interested reader can find in [Fogagnolo and Mazzieri 2022].
We are denoting with ∂∗E the reduced boundary of a finite perimeter set E .

Definition 4.5 (outward minimising and strictly outward minimising sets). Let (M, g) be a complete
Riemannian manifold. Let E ⊂ M be a bounded measurable set with finite perimeter. E is outward
minimising if for any F ⊇ E we have |∂∗E | ≤ |∂∗F |, where by ∂∗F we denote the reduced boundary of
a set F. We say E is strictly outward minimising if it is outward minimising and whenever |∂∗E | = |∂∗F |

for some F ⊇ E we have that |F ∖ E | = 0.

We can define the strictly outward minimising hull �∗ of an open bounded subset � with smooth
boundary as

�∗
= Int E for some bounded E containing � such that |E | = inf

F∈SOMBE(�)
|F |, (4-12)

where by SOMBE(�) we denote the family of all bounded strictly outward minimising sets containing �
and Int E is the measure-theoretic interior of E . As a consequence of [Fogagnolo and Mazzieri 2022,
Theorem 1.1], if (M, g) is a manifold with nonnegative Ricci curvature and Euclidean volume growth,
then�∗ as defined above is unique and it is a maximal volume solution to the problem of area minimisation
with obstacle �, that is,

|∂∗�∗
| = inf{|∂∗F | | F is bounded and �⊆ F}.

Outward minimising sets can be characterised as those satisfying

|∂�| = |∂�∗
|. (4-13)

The relation between the strictly outward minimising hull of a bounded set with smooth boundary � and
its p-capacity in the family of manifolds we are working on is resumed in the limit

lim
p→1+

Cp(�)=
|∂�∗

|

|Sn−1|
.

Such a result is contained in the far more general [Fogagnolo and Mazzieri 2022, Theorem 1.2], having in
mind the relation between the p-capacity and the normalised p-capacity given in Definition 2.7. Letting
p → 1+ in the L p-Minkowski inequality (4-8) and employing the dominated convergence theorem
complete the proof of the extended Minkowski inequality of Theorem 1.1,(

|∂�∗
|

|Sn−1|

)n−2
n−1

AVR(g)
1

n−1 ≤
1

|Sn−1|

∫
∂�

∣∣∣∣ H
n − 1

∣∣∣∣ dσ. (4-14)
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Outward minimising sets are mean-convex, as a simple variational argument immediately shows, and
satisfy (4-13). As a corollary, the Minkowski inequality can be simplified for this particular class of
subsets as in the following statement.

Corollary 4.6 (Minkowski inequality for outward minimising sets). Let (M, g) be complete Riemannian
manifold with Ric ≥ 0 and Euclidean volume growth. Let � ⊆ M be a bounded outward minimising
subset with smooth boundary, then(

|∂�|

|Sn−1|

)n−2
n−1

AVR(g)
1

n−1 ≤
1

|Sn−1|

∫
∂�

H
n − 1

dσ. (4-15)

Remark 4.7 (sharpness of the Minkowski inequality for outward minimising sets). The sharpness of
the Minkowski inequality for outward minimising sets (4-15) is not difficult to check even in nonflat
spaces. In fact, in a C 1-asymptotically conical manifold, where the metric g approaches the cone metric
dρ⊗ dρ+ ρ2gL in the C 1-topology, big level sets of ρ are outward minimising (see, e.g., [Benatti et al.
2024, Lemma 4.3]) and is straightforward to check that {ρ = R} saturates (4-15) in the limit as R → +∞.

Going beyond asymptotically conical spaces, one can infer the sharpness of the Minkowski inequal-
ity for outward minimising sets in manifolds of nonnegative Ricci curvature and Euclidean volume
growth of dimension n ≤ 7. Indeed, the proof of [Fogagnolo and Mazzieri 2022, Theorem 1.3] can
be readapted by exploiting (4-15) in place of the Willmore-type inequality [Agostiniani et al. 2022b,
Theorem 1.1]. This would allow showing that the infimum among all outward minimising smooth sets
of |∂�|

−(n−2)/(n−1)
∫
∂�

H is the lower bound given by (4-15), exactly in the same way [Fogagnolo and
Mazzieri 2022, Theorem 1.3] provides the sharpness of the Willmore-type inequality.

4C. Rigidity statement. We finally characterise the subsets � that saturate the inequality (4-14). We are
getting this rigidity result evolving ∂� by smooth IMCF, proving that, in an outer neighbourhood of ∂�,
the manifold is a truncated cone with the same volume ratio of (M, g). The conclusion then follows from
a generalisation of the Bishop–Gromov theorem.

Going into more detail, since ∂� is strictly mean-convex, we can consider a sequence of sets �t with
t ∈ [0, T ) such that ∂�t = Ft(∂�), where Ft : ∂�→ M satisfies

d
dt

Ft(∂�)=
1

Ht
νt , (4-16)

where νt and Ht are respectively the outer unit normal and the mean curvature of ∂�t . The conical
splitting we aim for is inspired by an argument contained in [Huisken and Ilmanen 2001, Section 8]. The
first step consists in the following fundamental lemma.

Lemma 4.8. Let (M, g) be a complete Riemannian manifold with Ric ≥ 0 and 6 ⊆ M a totally umbilical
closed hypersurface such that Ric(ν, ν) = 0 where ν is the normal unit vector field to 6. Then 6 has
constant mean curvature.

Proof. The (traced) Codazzi–Mainardi equations and the totally umbilicity yield

Ric jν = Di hi j − D j H = −
n − 2
n − 1

D j H
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for any j = 1, . . . , n − 1. Consider, at a fixed point on 6, the vector ηλ = λD⊤H + ν, with λ ∈ R. Since
Ric(ν, ν)= 0, we have

0 ≤ Ric(ηλ, ηλ)= 2 Ric jν η
j
λη
ν
λ + Rici j η

i
λη

j
λ = −2λ

n − 2
n − 1

|D⊤H|
2
+ λ2 Rici j Di H D j H

for every λ ∈ R. This can happen only if |D⊤H| = 0, so that H is constant on 6. □

The following straightforward but very important consequence of the Bishop–Gromov monotonicity
ensures in particular that if an outer neighbourhood of a bounded open set with smooth boundary�⊂ M is
isometric to a truncated cone, then the whole complement of� is isometric to a truncated cone based at ∂�.

Lemma 4.9. Let (M, g) be a complete noncompact Riemannian manifold with Ric ≥ 0. Let K ⊂ M be
a bounded open set. Suppose there exists an outer neighbourhood A ⊂ M ∖ K of K such that (A, g) is
isometric to (

[ρ0, ρ1] × ∂K , dρ⊗ dρ+

(
ρ

ρ0

)2

g∂K

)
for 0< ρ0 < ρ1. Then

|∂K | ≥ ρn−1
0 |Sn−1

| AVR(g), (4-17)

and the equality holds if and only if (M ∖ K , g) is isometric to(
[ρ0,+∞)× ∂K , dρ⊗ dρ+

(
ρ

ρ0

)2

g∂K

)
.

Proof. Consider the cone (C, ĝ) given by(
(0, ρ1)× ∂K , dρ⊗ dρ+

(
ρ

ρ0

)2

g∂K

)
,

and the Riemannian manifold, with a conical singularity, obtained by gluing (C, ĝ) with (M∖(K ∪ A), g)
along {ρ = ρ1}. By our assumptions, such a manifold is well-defined with nonnegative Ricci curvature
outside of the tip o of C , and coincides with (M, g) in the complement of K. In C , the geodesic distance
from o is given by ρ, and in particular, by Bishop–Gromov monotonicity,

|{ρ = r}|

rn−1|Sn−1|
≥ AVR(g)

for any r ∈ (0, ρ1). Since |{ρ = ρ0}| = |∂K |, setting r = ρ0 proves (4-17). If equality holds, then,
by the rigidity statement in the Bishop–Gromov theorem for manifolds with a conical singularity, the
whole manifold we constructed is isometric to a cone, and in particular, (M ∖ K , g) splits as claimed.
This well-known, slightly enhanced version of the Bishop–Gromov rigidity statement can be readily
deduced from its classic proof, or seen as a very special case of its version for nonsmooth metric spaces
[De Philippis and Gigli 2016]. □

We finally have at our disposal all the tools we need to work out the splitting argument leading to
Theorem 1.2.
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Proof of Theorem 1.2. Suppose that some strictly outward minimising �⊂ M with strictly mean-convex
boundary satisfies (

|∂�|

|Sn−1|

)n−2
n−1

AVR(g)
1

n−1 =
1

|Sn−1|

∫
∂�

H
n − 1

dσ. (4-18)

Since ∂� is by assumption strictly mean-convex, we can evolve it by (smooth) IMCF ∂�t defined in
(4-16) for t ∈ [0, T ). By the [Huisken and Ilmanen 2001, Smooth Start Lemma 2.4], up to shortening
the time interval, we can assume that �t is strictly outward minimising for any t ∈ [0, T ). Indeed, since
� is strictly outward minimising, the flow coincides for a short time with the weak notion of IMCF,
which exists in our setting by [Mari et al. 2022, Theorem 1.7]. The sublevel sets of the weak IMCF being
strictly outward minimising is a basic and fundamental property illustrated in [Huisken and Ilmanen 2001,
Minimizing Hull Property 1.4]. Consider then the function Q : [0, T )→ R defined by

Q(t)= |∂�t |
−

n−2
n−1

∫
∂�t

Ht dσ.

By evolution equations for curvature flows derived for example in [Huisken and Polden 1999, Theorem 3.2],
a straightforward computation shows that

Q′(t)= −|∂�t |
−

n−2
n−1

∫
∂�t

|h̊t |
2
+ Ric(νt , νt)

Ht
dσ ≤ 0,

where by h̊t we denote the trace-free part of the second fundamental form ht of ∂�t . On the other hand,
the strict inequality for some t ∈ [0, T ) would result in a contradiction to the Minkowski inequality. Thus
Q′(t) vanishes for any t ∈ [0, T ) and, in particular ∂�t satisfies (4-18) for any t ∈ [0, T ). Hence, ∂�t

is totally umbilical and satisfies Ric(νt , νt) = 0 for every t ∈ [0, T ). By Lemma 4.8 ∂�t has constant
mean curvature for every t ∈ [0, T ).

On {0 ≤ t < T }, the solution to the weak level set formulation of the IMCF w, which in our smooth
case just means {w = t} = ∂�t , satisfies the relation

Ht = div
(

Dw
|Dw|

)
(xt)= |Dw|(xt)

at any xt ∈ ∂�t . Hence, since Ht > 0, a well-known extension of the Gauss’ lemma yields

g =
dw⊗ dw
|Dw|2

+ g∂�t
=

dt ⊗ dt
H2

t
+ g∂�t

. (4-19)

The evolution equation (see [Huisken and Polden 1999, Theorem 3.2(i)]) satisfied by g∂�t
is

∂

∂t
g∂�t

= 2
ht

Ht
g∂�t

=
2

n − 1
g∂�t

,

where the last identity is due to the total umbilicity of ∂�t . Integrating such equation we deduce

g∂�t
= e

2t
(n−1) g∂�. (4-20)
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On the other hand, the evolution equation for the mean curvature along the IMCF (see [Huisken and
Polden 1999, Theorem 3.2(v)]) gives

∂

∂t
Ht = −1∂�t

(
1

Ht

)
−

1
Ht

[|ht |
2
+ Ric(νt , νt)] = −

Ht

n − 1
,

where the last identity is due to the fact that ∂�t is totally umbilical, Ric(νt , νt) = 0 and the mean
curvature Ht of ∂�t depends only on t . Integrating it we obtain that

Ht = e−
t

n−1 H0, (4-21)

where H0 is the mean curvature of ∂�.
Plugging (4-20) and (4-21) into (4-19), we deduce that ({0 ≤ t < T }, g) is isometric to(

[0, T )× ∂�, e
2t

n−1
dt ⊗ dt

H2
0

+ e
2t

n−1 g∂�

)
.

Performing the change of variables

ρ =
(n − 1)

H0
e

t
(n−1) ,

the metric can be written as(
[ρ0, ρ(T ))× ∂�, dρ⊗ dρ+

(
ρ

ρ0

)2

g∂�

)
, where ρ0 =

(n − 1)
H0

.

On the other hand, since by assumption ∂� saturates the Minkowski inequality, that is, (4-18) holds, we
immediately get

ρ0 =

(
|∂�|

AVR(g)|Sn−1|

) 1
n−1

,

and we conclude by the rigidity statement in Lemma 4.9 that the whole M ∖� is isometric to a truncated
cone. □

In the following remark, we briefly discuss how the assumptions for the rigidity can be relaxed in
small dimensions.

Remark 4.10. In dimension 3 ≤ n ≤ 7, an open bounded subset � with smooth strictly mean-convex
boundary satisfying (

|∂�∗
|

|Sn−1|

)n−2
n−1

AVR(g)
1

n−1 =
1

|Sn−1|

∫
∂�

H
n − 1

dσ

is a priori strictly outward minimising, and thus, in this case, such an assumption can be dropped. Indeed, by
approximating � via mean curvature flow with smooth strictly outward minimising domains, as described
in [Huisken and Ilmanen 2001, Lemma 5.6], we deduce that (4-14) holds also for C 1,1-hypersurfaces.
In particular, the Minkowski inequality holds also for the strictly outward minimising hull of � (see
the regularity results recalled in [Huisken and Ilmanen 2001, Regularity Theorem 1.3] and [Fogagnolo
and Mazzieri 2022, Theorem 2.18]) for every � with smooth boundary, provided the dimensional bound
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holds. We can then argue by contradiction. Suppose that �∗ does not coincide with �. Then(
|∂�∗

|

|Sn−1|

)n−2
n−1

AVR(g)
1

n−1 =
1

|Sn−1|

∫
∂�

H
n − 1

dσ >
1

|Sn−1|

∫
∂�∗

H
n − 1

dσ,

where the last inequality is due to the fact that H = 0 on ∂�∗ ∖ ∂�. But this contradicts the Minkowski
inequality for �∗; hence �=�∗.

4D. A pinching condition and a sphere theorem. In this subsection, we exploit the monotonicity of
the function t 7→ F∞

p (t) defined in (3-2) to prove a couple of rigidity statements involving a pinching
condition on the mean curvature of ∂� and an a priori bound on the gradient of the p-capacitary potential
associated to �. These results without any convexity assumption are also new in Rn, and they constitute
the complete nonlinear generalisation of [Borghini et al. 2019, Corollary 1.4 and 1.9]. For convex subsets
of the Euclidean space they are the content of [Fogagnolo et al. 2019, Corollary 2.16 and 2.17].

Theorem 4.11. Let (M, g) be a complete Riemannian manifold with Ric ≥ 0 and Euclidean volume
growth. If there exists an open bounded subset �⊆ M with smooth boundary satisfying

−

[
AVR(g)
Cp(�)

] 1
n−p

≤
H

n − 1
≤

[
AVR(g)
Cp(�)

] 1
n−p

(4-22)

on every point of ∂�, then (M ∖�, g) is isometric to(
[ρ0,+∞)× ∂�, dρ⊗ dρ+

(
ρ

ρ0

)2

g∂�

)
, where ρ0 =

(
|∂�|

AVR(g)|Sn−1|

) 1
n−1

.

In this case ∂� is a connected totally umbilical hypersurface with constant mean curvature in (M ∖�, g).

Proof. We can argue by contradiction as in Theorem 4.3 to prove that(
n − p
p − 1

)[
AVR(g)
Cp(�)

] 1
n−p

≤ sup
∂�

|Du|.

Indeed, we can follow the same lines replacing the consequence of the monotonicity of Fp with the
corresponding of F∞

p , which thanks to (2-9) can be rewritten as

F∞

p (t)= t
n−1
n−p sup

{u=1/t}
|Du| =

(
Cp(�t)

Cp(�)

) 1
n−p

sup
{ut=1}

|Dut |,

where ut = tu and �t = {u > 1/t} ∪�. Accordingly, we employ the Hölder inequality with conjugate
exponents a = +∞ and b = 1, that is,

Capp(�t)
1
p ≤ sup

{u=1/t}
|Dut |

(∫
{u=1/t}

1
|Dut |

dσ
)1

p

.

In the end, by Theorem 3.2 we get

sup
∂�

|Du| ≤
(n − p)

(p − 1)(n − 1)
sup
∂�

|H|

and the equality holds if and only if (M ∖�, g) splits as in the statement. Condition (4-22) easily implies
the equality. □
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The above result is a rigidity theorem under a pinching condition on the mean curvature of ∂� with
respect to its p-capacity. From the proof above we can also get that

1
p − 1

[
AVR(g)
Cp(�)

] 1
n−p

≤ sup
∂�

∣∣∣∣ Du
n − p

∣∣∣∣ (4-23)

and the equality is satisfied only on metric cones. The previous inequality gives a lower bound on the
gradient of u on ∂� in terms of the p-capacity of � that, when attained, forces (M, g) to be (isometric
to) Rn with � a Euclidean ball.

Theorem 4.12. Let (M, g) be a complete Riemannian manifold with Ric ≥ 0 curvature and Euclidean
volume growth. Let � ⊆ M be an open bounded subset with smooth boundary, u the p-capacitary
potential associated to � and assume that

sup
∂�

∣∣∣∣ Du
n − p

∣∣∣∣ ≤
1

p − 1
AVR(g)

1
p−1

(
|Sn−1

|

|∂�|

) 1
n−1

. (4-24)

Then (M, g) is isometric to Rn with the Euclidean metric and � is a ball.

Proof. Under the assumption (4-24), we get

Cp(�)=

(
p − 1
n − p

)p−1 1
|Sn−1|

∫
∂�

|Du|
p−1 dσ ≤ AVR(g)

(
|Sn−1

|

|∂�|

)−
n−p
n−1

,

which yields(
|Sn−1

|

|∂�|

)n−p
n−1

≤
AVR(g)
Cp(�)

≤ (p − 1)n−p sup
∂�

∣∣∣∣ Du
n − p

∣∣∣∣n−p

≤ AVR(g)
n−p
p−1

(
|Sn−1

|

|∂�|

)n−p
n−1

, (4-25)

where we used (4-23) together with the condition (4-24). Thus, we obtain that AVR(g)= 1, and hence,
by the Bishop–Gromov theorem, that (M, g) is isometric to Rn with the Euclidean metric. Since all
inequalities in (4-25) become equalities, by the second one we can apply the rigidity statement in
Theorem 3.2 which ensures that ∂� is a compact connected and totally umbilical hypersurface of Rn ,
that is, � is a ball. □
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