Automatic landing is a feature that allows aerial robotic platforms to safely and accurately land without human intervention. This paper presents a plug-and-play tiny machine learning vision-based system for automatic landing compatible with the Pixhawk flight controller series. The proposed system is implemented on a low-power microcontroller, specifically OpenMV Cam H7 Plus, demonstrating that a constrained resources board can be used as a companion computer to enable autonomous functions for UAVs. The experiments confirm the proposed system's effectiveness, capable of correctly identifying a landing pad and consequently controlling the UAV to align it over the pad center before landing. The system overhead is only $2\%$ of the UAV's total energy budget, with an accuracy of $93.5\%$ and precision of $94.0\%$.

A Plug-and-Play TinyML-based Vision System for Drone Automatic Landing / Santoro, Luca; Albanese, Andrea; Canova, Marco; Rossa, Matteo; Fontanelli, Daniele; Brunelli, Davide. - (2023), pp. 293-298. (Intervento presentato al convegno MetroInd4.0 tenutosi a Brescia, Italia nel 6th-8th June 2023) [10.1109/metroind4.0iot57462.2023.10180179].

A Plug-and-Play TinyML-based Vision System for Drone Automatic Landing

Santoro, Luca
Primo
;
Albanese, Andrea
Secondo
;
Fontanelli, Daniele
Penultimo
;
Brunelli, Davide
Ultimo
2023-01-01

Abstract

Automatic landing is a feature that allows aerial robotic platforms to safely and accurately land without human intervention. This paper presents a plug-and-play tiny machine learning vision-based system for automatic landing compatible with the Pixhawk flight controller series. The proposed system is implemented on a low-power microcontroller, specifically OpenMV Cam H7 Plus, demonstrating that a constrained resources board can be used as a companion computer to enable autonomous functions for UAVs. The experiments confirm the proposed system's effectiveness, capable of correctly identifying a landing pad and consequently controlling the UAV to align it over the pad center before landing. The system overhead is only $2\%$ of the UAV's total energy budget, with an accuracy of $93.5\%$ and precision of $94.0\%$.
2023
2023 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT)
Piscataway, New Jersey
IEEE
979-8-3503-9657-7
Santoro, Luca; Albanese, Andrea; Canova, Marco; Rossa, Matteo; Fontanelli, Daniele; Brunelli, Davide
A Plug-and-Play TinyML-based Vision System for Drone Automatic Landing / Santoro, Luca; Albanese, Andrea; Canova, Marco; Rossa, Matteo; Fontanelli, Daniele; Brunelli, Davide. - (2023), pp. 293-298. (Intervento presentato al convegno MetroInd4.0 tenutosi a Brescia, Italia nel 6th-8th June 2023) [10.1109/metroind4.0iot57462.2023.10180179].
File in questo prodotto:
File Dimensione Formato  
main.pdf

accesso aperto

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.53 MB
Formato Adobe PDF
1.53 MB Adobe PDF Visualizza/Apri
A_Plug-and-Play_TinyML-based_Vision_System_for_Drone_Automatic_Landing.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/403550
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact