
A Plug-and-Play TinyML-based Vision System
for Drone Automatic Landing

Luca Santoro, Andrea Albanese, Marco Canova, Matteo Rossa, Daniele Fontanelli and Davide Brunelli
Department of Industrial Engineering, University of Trento, Trento, Italy

name.surname@unitn.it

Abstract—Automatic landing is a feature that allows aerial
robotic platforms to safely and accurately land without human
intervention. This paper presents a plug-and-play tiny machine
learning vision-based system for automatic landing compatible
with the Pixhawk flight controller series. The proposed system
is implemented on a low-power microcontroller, specifically
OpenMV Cam H7 Plus, demonstrating that a constrained re-
sources board can be used as a companion computer to enable
autonomous functions for UAVs. The experiments confirm the
proposed system’s effectiveness, capable of correctly identifying
a landing pad and consequently controlling the UAV to align it
over the pad center before landing. The system overhead is only
2% of the UAV’s total energy budget, with an accuracy of 93.5%
and precision of 94.0%.

Index Terms—Ultra-wideband, device-free localization, sensor-
less sensing, multipath-assisted localization, passive localization.

I. INTRODUCTION

Autonomous Unmanned Aerial Vehicles (UAV) are gaining
popularity across different industries owing to their capacity to
execute tasks more efficiently and safely compared to drones
piloted by humans. Autonomous UAVs have proven beneficial
in a variety of scenarios, for example, in agriculture [1], [2],
surveillance [3], environmental inspection [4]–[6] and explo-
ration [7], road safety [8], [9] structural health monitoring [10],
target detection and tracking [11] and leader following sys-
tem [12]. Autonomous drones can assist in monitoring and
exploring locations difficult for human access, even in harsh
conditions. While many companies rely on UAVs for their
operations, there is always the possibility of encountering
unforeseen events during their missions, such as battery deple-
tion, adverse weather conditions, and environmental changes
that could compromise the safety of the flight.

UAVs can use various tools and enabling technologies to
enhance navigation capabilities, including environmental sen-
sors, computer vision, radio frequency sensors, and Artificial
Intelligence (AI). AI and its recent boost provided by Deep
Neural Networks (DNN) represent key drivers in developing
autonomous vehicles. DNNs are particularly adapt at learning
patterns from diverse sources, such as physical signals and
images. Unfortunately, UAVs are vulnerable to high energy
consumption due to their reliance on batteries with limited
capacity. As a result, implementing high-accuracy DNNs on
a UAV is a not negligible overhead to the autonomy of these
drones. Low-power microcontrollers (MCU) could be a viable
solution for deploying lightweight DNNs on a UAV; however,

their limited computational resources challenge the design of
efficient DNNs.

Researchers recently suggested to utilize cloud architec-
tures to process data on remote servers [13], [14]. Although
cloud computing is powerful, this approach relies on network
connectivity and can introduce communication latency issues
that compromise the real-time functionality of the system.
Therefore, the most scalable and robust approach is Tiny
Machine Learning (tinyML), which involves conducting all
computations onboard. This method optimizes and adapts
resource needs to match the hardware used. Thus, various
studies have utilized deep learning-based systems to facilitate
the autonomous navigation of UAVs. For example, [15] used
a Recursive-Convolutional Neural Network combined with a
feature-matching algorithm to localize landing areas and detect
obstructions. The network was trained using a dataset of 250
images for 22000 epochs, achieving an accuracy of 90%. The
system was then tested in the field using a Tello Ryze tech
drone with a maximum frame-rate of 5 FPS. [16] presents
a precise UAV landing system using YOLOv3, which uses
a one-stage algorithm based on a darknet53 backbone and
re-trains the pre-trained extraction network using 100 images
for landing mark detection, resulting in 99% accuracy. The
system’s performance was evaluated in a simulated environ-
ment and on a real drone, exhibiting an error margin of only
0.3 meters for the landing maneuver. However, many current
state-of-the-art approaches rely on either cloud architecture
or single-board computers (e.g., Raspberry Pi, Google Coral,
Nvidia Nano Jetson) to execute image and neural processing
tasks. These solutions are inefficient due to their reliance on
network connectivity and energy consumption. Therefore, we
can increase the system’s overall efficiency by using MCU-
class devices to bring the processing closer to the sensor.

This paper presents a plug-and-play vision system based
on the tinyML approach for an automatic landing application.
The system uses an MCU-based camera, OpenMV Cam H7
Plus, which acts as a decision-maker based on the onboard
inference result and as a path planner for drone control. In
particular, this paper aims at providing the implementation of
a tinyML-based plug-and-play automatic landing system by
using an OpenMV Cam, extending the official documentation,
showing how this constrained microcontroller may be used not
only as an optical flow sensor but as an onboard computer,
suitable for any drone endowed with the commercial-of-
the-shelf Pixhawk flight controller. Additionally, we provide



Vision and 
tracking algorithm tinyML Landing pad 

identification
Coordinates 
extraction

Motion 
control

Vision Control

Fig. 1. Flowchart of the two running stages of the algorithm.

a system characterization considering energy consumption,
frame rate, and a qualitative assessment of the accuracy of the
landing maneuver by using simulations and real tests using a
drone class-250 mm.

The rest of the paper is organized as follows. Section II
presents and discusses the background and formulates the
problem to solve. Section III presents the solution and the
system design. Finally, experimental results and the hardware
used in this work are presented in Section IV. Section V close
this work with final remarks and possible improvements.

II. BACKGROUND AND PROBLEM FORMULATION

The automatic landing system can be easily integrated
with the Pixhawk flight controller1, a widely used open-
source autopilot for drone navigation and control. Our design
combines the vision and tracking algorithms with the drone
control algorithm and runs them on a single MCU. Although
these processes are interconnected, they can be designed as
separate stages in a unified pipeline. The flowchart in Figure 1
illustrates the system’s pipeline. In the first stage, the vision
and tracking algorithm detects and locates the landing pad,
which is then used as an input to the drone control stage. The
drone control algorithm uses this information to determine
the drone’s relative position to the landing pad. The two
components are linked by the landing pad coordinates, which
allows for easy replacement of the vision algorithm without
compromising the drone control algorithm correctness.

A. Drone Control Algorithm

The Pixhawk flight controller offers a flight mode referred
to as off-board mode (for the PX4 flight stack) or Guided
mode (for Ardupilot flight stack), which enables the UAV
control by means of a companion computer installed on-
board. Companion computers such as Raspberry Pi 4, Nvidia
Jetson Nano, Odroid, and Tegra K1 are commonly used,
as they provide enough computational power to carry out
real-time image processing tasks and control the UAV. Our
approach utilizes a microcontroller with limited resources as
a companion computer to acquire the images, execute the
neural network and control the UAV. The companion com-
puter communicates with the flight controller through UART,
using MAVlink 1 as the messaging protocol. MAVlink 1 is
a lightweight communication protocol that enables smooth
communication between the on-board components.

The Cartesian coordinates of the camera, which is pointing
downwards, is expressed in the UAV reference frame, dubbed

1https://pixhawk.org/

Δ

𝑥

𝑦
𝑁

𝐸
𝑓

𝑟

𝑥

𝑦

Frame acquired

W

Hα

Fig. 2. Sketch of the reference systems used for drone navigation.
(x〈C〉, y〈C〉) is the image reference system. (x〈U〉, y〈U〉) is an auxiliary
reference system used for taking account of the drone position from the
landing pad. (f, r) are the Forward and Right axes of the Forward, Right,
Down, i.e., 〈fru〉 reference system, in which we compute the velocities to
control the drone using velocity key points. Similarly, (N, E) are the North
and East axes of the North, East, Down, i.e., 〈NED〉, reference system, in
which we control the drone through positional key-points.

〈U〉, in position pc = [xg, yg]T , i.e., the coordinates of
the geometric centre of the UAV. Thus, we can regard the
centre of the acquired image as the position of the drone. For
control purposes, the coordinates l = [xl, yl]

T of the centre
of the landing pad are expressed in the camera reference
frame, dubbed 〈C〉, whose origin is located in the top-left
corner of the acquired image (see Figure 2 for reference).
Therefore, to express l in 〈U〉 we need to perform a coordinate
transformation:

x
〈U〉
l = x

〈C〉
l − w

2
,

y
〈U〉
l = y

〈C〉
l − h

2
,

(1)

where [x
〈U〉
l , y

〈U〉
l ]T express the centre of the landing pad in

the UAV reference frame, [x
〈C〉
l , y

〈C〉
l ]T express the centre

of the landing pad in the camera reference frame, h and w
respectively denote the height and width of the acquired image
as reported in Figure 2.

The distance ∆ between the UAV and the landing pad, as
well as the angle α between the landing pad and the x-axis
in 〈U〉, can be calculated as

∆ =
√
x2l + y2l ,

α = arctan(yl, xl).
(2)

Once the landing pad is detected and the distance between
the UAV and landing pad centres is greater than a given
threshold ∆ ≥ dthr, a proportional controller is applied to
control the drone velocity, generating a velocity set-point in



Set Target Lock:
FALSE

No

Yes

Circle detected

Yes

landing pad

No

Yes

Target lock?

Search routine

Yes

No

Land

Motion control and
set Target Lock:

TRUE

Fig. 3. Block diagram of the landing algorithm.

〈fru〉 expressed in 〈U〉

[vf , vr, vd] =

[−Kp∆ sin(α),Kp cos(α), 0], if f, r ≥ 0

[−Kp sin(π − α),−Kp cos(π − α), 0], if f ≤ 0 ∧ r ≥ 0

[−Kp sin(π − α),−Kp cos(π − α), 0], if f, r ≤ 0

[−Kp sin(α)|,Kp cos(α), 0], if f ≥ 0 ∧ r ≤ 0,

[0, 0, 0], otherwise.
(3)

The flowchart depicting the logical structure of the control
algorithm is reported in Figure 3: notice the state target lock,
which indicates if the landing pad has been recently detected
and it is set to True when a landing pad is detected. On the
contrary, if the landing pad is not visible, the algorithm waits
for a sampling period before setting the flag to False. This
strategy adds a dwell time to prevent sudden switches between
the landing pad alignment and the mission task.

B. Communication interface

The OpenMV Camera is officially supported by Pixhawk
as an optical flow sensor to aid the autopilot for velocity
estimation. We develop an ad-hoc custom API set to extend
the OpenMV as an on-board microcontroller for autonomous

STX LEN SEQ SYS ID COMP ID MSG ID PAYLOAD (0 – 255 BYTES) CHECKSUM 
(2 BYTES)

MAVLINK v1 Frame (2 – 260 bytes)

Fig. 4. MAVlink 1 packet format.

flight. The Mavlink 1 message structure2 is reported in Fig-
ure 4, where
• STX: Protocol-specific start-of-text (STX) marker used

to indicate the beginning of a new packet;
• LEN: Indicates the length of the following payload

section (fixed for a particular message);
• SEQ: Detects packet loss. Components increment value

for each message sent;
• SYS ID: ID of the system (vehicle) sending the message;
• COMP ID: ID of component sending the message. Used

to differentiate components in a system (e.g., autopilot
and a camera);

• MSG ID: ID of message type in payload. Used to decode
data back into message object (1 Byte);

• PAYLOAD: Message data. Content depends on message
type (i.e. Message ID) (0− 255 Bytes);

• CHECKSUM: includes a 2 Byte CRC-16/MCRF4XX to
allow detection of message corruption (2 Bytes).

The OpenMV Cam sends the inputs for the UAV through the
UART port, which supports asynchronous serial data transfer.
Data must be provided at a constant rate of minimum 2 Hz.

C. Problem formulation and solution overview

To perform a landing maneuver, a system that can extract
the landing pad’s coordinates in the UAV’s reference frame
from an onboard camera image is required. Moreover, we must
ensure that the system’s weight and power consumption do
not compromise the UAV’s flight autonomy. To address this
challenge, we started with an optimized and quantized Neural
Network (NN) for the OpenMV Cam H7 plus, developing
custom APIs based on the same communication protocol
used by the Pixhawk. The algorithm controls the drone for
alignment with the landing pad and communicates with the
Pixhawk flight controller ensuring low-power consumption.

III. TINY NEURAL NETWORK FOR AUTOMATIC LANDING:
THE NEWTON ALGORITHM

The acquired images are preprocessed to identify a secure
landing zone within a video frame. Specifically, the safe
landing area is characterized by a landing pad displaying an
”H” symbol, which can appear against an orange, blue, or
white background. To this end, the algorithm must first isolate
a Region of Interest (RoI) that most likely contains the target
within the frame. Then the CNN uses the RoI to generate
a binary classification as output: either Landing Pad or Not
Landing Pad. The training dataset comprises 13576 images for
the Landing Pad class and 12807 images for the Not Landing
Pad class. In Table I are reported the training parameters to

2https://mavlink.io/en/messages/common.html#mav commands



TABLE I
NEURAL NETWORK TRAINING PARAMETERS.

Epochs 20

Batch Size 32

Initial learning rate 10−3

Input image
Single channel

64 × 64 px

Optimizer Adam

Loss function Binary cross-entropy

Source framework Tensorflow

(a) (b)

(c) (d)

Fig. 5. Sample of vision algorithm workflow. (a) Original frame. (b)
Frame after the application of the mean filter. (c) ROI highlighting after the
application of the Hough transform. (d) Final crop to be given as input to the
NN.

develop the proposed neural network The preprocessing stage
is computationally intensive and it is critical: it has to carefully
select all the necessary functions and algorithms and has to
preserve the system performance.

NEWTON’s preprocessing comprises the following stages:
• Acquisition of greyscale frames with QVGA resolution

(320× 240) (Figure 5-a);
• Backup of the original image for further investigation and

debugging;
• Application of the mean operator for contour extraction

(Figure 5-b).
• Application of the Hough Transform for identify all the

circles in the image;
• Circles filtering by radius. In this case, it is chosen a

minimum and maximum radius of 10 and 50 pixels,
respectively;

• Storing the RoIs which contain the filtered circles (Fig-
ure 5-c);

• Crop of the RoIs collected taking as reference the centre
of the circle with a width and height equal to 1.5 · r,

where r is the circle radius (Figure 5-d).
We choose a mean operator instead of other operators, such

as median or Canny operators, since it offers the optimal
balance between contour highlighting and frame rate. Further-
more, we avoided using the conventional Gaussian blur filter
for noise reduction as it considerably decreased the frame rate
of the video stream.

The preprocessed Regions of Interest are fed into a tiny-NN
for landing pad classification. The NN is based on a modified
LeNet-5 architecture [17] based on [18]. After obtaining the
landing pad’s center, the second stage of NEWTON employs
the procedure outlined in Section II to steer the UAV.

The original model size is around 77.2 MB, more than the
available memory on the OpenMV Cam H7 plus. Considering
the available limited memory, a NN compression is necessary
to meet the hardware constraints. Therefore we use a full-
integer quantization [19], a technique used to reduce the mem-
ory requirements and increase the execution speed of neural
networks by representing the network weights and activations
as integers instead of floating-point numbers. However, it can
lead to slightly degrading the model’s accuracy due to the
loss of precision associated with the quantization. Thus, it
is important to carefully choose the quantization parameters
and optimize the model accordingly to minimize the impact
on accuracy. The main drawbacks of this approach are that
it only works with tflite-models and full integer quantization
with int-encoding. After applying full-integer quantization to
the original model size of 77.2 MB, we obtained a compressed
model size of 6 MB, resulting in a compression factor of
approximately 13 times. Subsequently, we conducted several
tests to evaluate the board’s performance, both with only pre-
processing and with preprocessing/inference, thus achieving
a frame rate of, respectively, 12 frame-per-second (fps) and
6 fps.

IV. RESULTS

We evaluate the proposed landing system’s effectiveness in
a simulation environment and a real scenario. Furthermore,
we evaluate the performance of the tiny-NN by measuring
the accuracy, precision, recall, and f-score. The Pixhawk
framework supports testing the algorithm in Software-In-The-
Loop (SITL) and Hardware-In-The-Loop (HITL) configura-
tions. Specifically, the SITL simulations allowed us to evaluate
the algorithm’s ability to identify the landing pad, calculate
the landing pad center coordinates, and control the drone
while excluding communication issues between the Pixhawk
and OpenMV Cam H7 plus. Instead, the HITL simulations
assessed the algorithm’s performance on the target hardware
and evaluated the communication linkage between the flight
controller and the companion computer.

A. Hardware

We validate our work through a real-world test using a
Holybro QAV250 quad-rotor class 250 mm, equipped with
the Pixhawk 4 Mini flight controller and the OpenMV Camera



(a) (b)

Fig. 6. In (a) the custom QAV250 drone prototype used for the practical
testing. OpenMV camera is fixed at the drone center, such that it points straight
down, in (b) the OpenMV Cam H7 Plus.

Fig. 7. Typhoon H480 hexacopter in the simulation environment. An instance
where the UAV identifies the landing pad and initiates the alignment phase.

H7 Plus3, reported in Figure 6. The OpenMV Cam H7 Plus
features an STM32H743II ARM Cortex M7 processor, and
among the communication interfaces it has an SPI bus that
can run up to 80 MBs, an I2C bus up to 1 Mb/s and an
asynchronous serial bus TX/RX up to 7.5 Mb/s. The OpenMV
Cam H7 Plus is equipped with an OMNIVISION OV5645
5-megapixel system-on-chip image sensor capable of taking
2592 × 1944 images. The OpenMV Cam weighs only 17 g,
excluding cables, and 20 g when cables are included. This
weight confirms that the hardware has the potential as a
suitable choice for medium-sized UAVs and mini-sized UAVs.

B. Software In The Loop Simulation and Hardware In The
Loop Simulation

We developed the SITL simulations using Gazebo4 and,
as an example, we used a hexa-copter, specifically the Ty-
phoon H480, equipped with a camera gimbal for the images
acquisition. In Figure 7, we can see an instance where the
UAV identifies the landing pad and initiates the alignment
phase. This simulation validates the algorithm used in the
automatic landing application, obtaining a mean error of
approximately 5 cm. Then, we proceeded with the HITL
simulation to test the communication between the OpenMV
Cam and the Pixhawk flight controller. This test was conducted
to ensure that the generation of the MAVLink messages and
their transmission were correctly managed with the UART
communication channel. This simulation validated the control

3https://openmv.io/products/openmv-cam-h7-plus
4https://gazebosim.org/home

TABLE II
PERFORMANCE COMPARISON BETWEEN THE ORIGINAL MODEL [18] AND

THE QUANTIZED MODEL.

Model Accuracy Precision Recall F-score

LeNet-5(original) 99.4 99.9 99.5 99.7

LeNet-5 (quantized) 93.5 94.0 94.0 93.0

Fig. 8. Preliminary outdoor test results.

algorithm performance and ensured the target hardware proper
functioning.

C. TinyNN test

To test the effectiveness of the tiny-NN, we used ap-
proximately 3000 images of a landing pad that were not
included in the training session. In Table II, we report the
accuracy, precision, recall, and F-score of the model, as
well as a comparison with the original NN-model [18]. As
explained in Section III, it is worth noting that the quantization
process slightly degrades the model’s performance. However,
the model’s classification accuracy is still satisfactory for
identifying landing pads correctly.

D. Preliminary experimental results

At this writing stage, real-world testing has been carried out
without the availability of ground truth, thereby requiring man-
ual and qualitative evaluation by tape. Figure 8 shows a frame
captured during an outdoor test, which successfully identified
the landing pad, alignment phase, and landing manoeuvrer
with an accuracy of approximately 30 cm as measured by
a centimetre tape. The outdoor tests accurately identified the
landing pad, the alignment phase, and the landing maneuver
with a precision of approximately 30 cm. In this first version
of the proposed architecture, the landing manoeuvrer does not
operate in closed-loop once the landing pad is acquired and the
UAV is aligned, resulting in the vertical descent being affected
by wind flow, particularly the wash-effect generated by the
propellers near the ground. Another challenge that impacts the
network’s performance in real-world experiments is the texture
of the ground. Specifically, we have observed that certain
ground conditions can influence the preprocessing stage, and
consequently, the estimation of the landing pad centre.



TABLE III
ENERGY CONSUMPTION AND PROCESSING-TIME FOR ONE FRAME

Energy consumption (mJ) Processing-time (ms)

Pre-process 244.3 156.4

Classification 244.8 156.3

E. Energy consumption
Autonomous navigation systems require a high frame rate

to guarantee smooth navigation. For these reasons, we char-
acterize the proposed landing system considering the energy
consumption and the frame rate. The energy consumption
is measured by monitoring the voltage drop across a shunt
resistor. To measure the frame rate, we trigger a GPIO of the
OpenMV Cam to track the initiation and completion of the
image processing task. Table III shows the energy consumption
and processing time for one frame. Processing one frame takes
156.4 ms for the pre-processing task and 156.4 ms for the
classification task, resulting in an overall frame rate of 3.2 fps.
The total energy consumption is 489.1 mJ. Therefore, a typical
UAV class 250 mm and equipped with a battery with a capacity
of 1400 mAh, which theoretically provides a flight time of
15 minutes, experiences only a 2% reduction in flight time.

V. CONCLUSION

Automatic landing systems are gaining interest in the indus-
try and research communities due to the expansion of UAVs
within a wide range of human activities. Creating temporary
landing zones is crucial to integrate this robotic platforms into
natural environments and to provide resiliency to unforeseen
conditions during the flight, such as under-voltage problems,
engine failures, or radio signal loss.

Therefore, this paper presents a plug-and-play vision plat-
form compatible with the Pixhawk flight controller series. The
platform uses an MCU-based camera which implements both
the safe landing zone detection and the path planning for
the landing maneuver. The platform is assessed in simulation
using real-world scenarios, validating the effectiveness of the
solution. The designed platform takes in due account both
the energy consumption and the frame rate. It performs a
processing execution of 3.2 fps and has an energy consumption
of 489.1 mJ per frame. Considering a drone powered by
a battery of 1400 mAh which guarantees a flight time of
15 minutes, our experiments confirm the UAV autonomy-
aware feature of the solution affecting the available energy
by only 2%.

ACKNOWLEDGMENTS

Funded by the European Union under NextGenerationEU (iNEST
project). Moreover the work was supported by the Italian Ministry
for Education, University and Research (MIUR) under the program
“Dipartimenti di Eccellenza (2023-2027)”.

REFERENCES

[1] B. Yang, T. L. Hawthorne, M. Hessing-Lewis, E. J. Duffy,
L. Y. Reshitnyk, M. Feinman, and H. Searson, “Developing
an introductory uav/drone mapping training program for seagrass
monitoring and research,” Drones, vol. 4, no. 4, 2020. [Online].
Available: https://www.mdpi.com/2504-446X/4/4/70

[2] N. Delavarpour, C. Koparan, J. Nowatzki, S. Bajwa, and X. Sun,
“A technical study on uav characteristics for precision agriculture
applications and associated practical challenges,” Remote Sensing,
vol. 13, no. 6, 2021. [Online]. Available: https://www.mdpi.com/2072-
4292/13/6/1204

[3] R. Akter, V.-S. Doan, G. B. Tunze, J.-M. Lee, and D.-S. Kim, “Rf-
based uav surveillance system: A sequential convolution neural networks
approach,” in 2020 International Conference on Information and Com-
munication Technology Convergence (ICTC), 2020, pp. 555–558.

[4] P. Tosato, D. Facinelli, M. Prada, L. Gemma, M. Rossi, and D. Brunelli,
“An autonomous swarm of drones for industrial gas sensing applica-
tions,” in 2019 IEEE 20th International Symposium on A World of
Wireless, Mobile and Multimedia Networks (WoWMoM), 2019, pp. 1–6.

[5] S. Asadzadeh, W. J. de Oliveira, and C. R. de Souza Filho, “Uav-
based remote sensing for the petroleum industry and environmental
monitoring: State-of-the-art and perspectives,” Journal of Petroleum
Science and Engineering, vol. 208, p. 109633, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0920410521012675

[6] S. Ghosh, K. Ghosh, S. Karamakar, S. Prasad, N. Debabhuti, P. Sharma,
B. Tudu, N. Bhattacharyya, and R. Bandyopadhyay, “Development of an
iot based robust architecture for environmental monitoring using uav,”
in 2019 IEEE 16th India Council International Conference (INDICON),
2019, pp. 1–4.

[7] L. Santoro, D. Brunelli, and D. Fontanelli, “On-line Optimal Ranging
Sensor Deployment for Robotic Exploration,” IEEE Sensors Journal,
vol. 22, no. 6, March 2022.

[8] F. Outay, H. A. Mengash, and M. Adnan, “Applications
of unmanned aerial vehicle (uav) in road safety, traffic
and highway infrastructure management: Recent advances and
challenges,” Transportation Research Part A: Policy and
Practice, vol. 141, pp. 116–129, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S096585642030728X

[9] R. Rumba and A. Nikitenko, “The wild west of drones: a review on
autonomous- uav traffic-management,” in 2020 International Conference
on Unmanned Aircraft Systems (ICUAS), 2020, pp. 1317–1322.

[10] Y. Tian, C. Chen, K. Sagoe-Crentsil, J. Zhang, and W. Duan, “Intelligent
robotic systems for structural health monitoring: Applications and future
trends,” Automation in Construction, vol. 139, p. 104273, 2022.

[11] M. Andreetto, M. Pacher, D. Macii, L. Palopoli, and D. Fontanelli,
“A Distributed Strategy for Target Tracking and Rendezvous using
UAVs relying on Visual Information only,” Electronics, no. 10, 2018.
[Online]. Available: http://www.mdpi.com/2079-9292/7/10/211

[12] L. Santoro, M. Nardello, M. Calliari, W. C. Guarienti, G. Luchi,
D. Fontanelli, and D. Brunelli, “Catch-me-if-you-can infrastructure-less
uwb-based leader-follower system for compact uavs,” in 2022 IEEE
International Symposium on Robotic and Sensors Environments (ROSE),
2022, pp. 1–7.

[13] M. Salhaoui, A. Guerrero-González, M. Arioua, F. J. Ortiz,
A. El Oualkadi, and C. L. Torregrosa, “Smart industrial iot monitoring
and control system based on uav and cloud computing applied to a
concrete plant,” Sensors, vol. 19, no. 15, 2019. [Online]. Available:
https://www.mdpi.com/1424-8220/19/15/3316

[14] S. Namani and B. Gonen, “Smart agriculture based on iot and cloud
computing,” in 2020 3rd International Conference on Information and
Computer Technologies (ICICT), 2020, pp. 553–556.

[15] M.-F. R. Lee, A. Nugroho, T.-T. Le, S. N. Bastida et al., “Landing area
recognition using deep learning for unammaned aerial vehicles,” in 2020
International Conference on Advanced Robotics and Intelligent Systems
(ARIS). IEEE, 2020, pp. 1–6.

[16] J. Wang, D. McKiver, S. Pandit, A. F. Abdelzaher, J. Washington, and
W. Chen, “Precision uav landing control based on visual detection,”
in 2020 IEEE Conference on Multimedia Information Processing and
Retrieval (MIPR). IEEE, 2020, pp. 205–208.

[17] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[18] A. Albanese, M. Nardello, and D. Brunelli, “Low-power deep
learning edge computing platform for resource constrained
lightweight compact uavs,” Sustainable Computing: Informatics
and Systems, vol. 34, p. 100725, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2210537922000609

[19] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network infer-
ence,” arXiv preprint arXiv:2103.13630, 2021.


