Hyperbolic curvature flow is a geometric evolution equation that in the plane can be viewed as the natural hyperbolic analogue of curve shortening flow. It was proposed by Gurtin and Podio-Guidugli [SIAM J. Math. Anal., 22 (1991), pp. 575–586] to model certain wave phenomena in solid-liquid interfaces. We introduce a semidiscrete finite difference method for the approximation of hyperbolic curvature flow and prove error bounds for natural discrete norms. We also present numerical simulations, including the onset of singularities starting from smooth strictly convex initial data.

Discrete Hyperbolic Curvature Flow in the Plane / Deckelnick, Klaus; Nürnberg, Robert. - In: SIAM JOURNAL ON NUMERICAL ANALYSIS. - ISSN 0036-1429. - 61:4(2023), pp. 1835-1857. [10.1137/22M1493112]

Discrete Hyperbolic Curvature Flow in the Plane

Nürnberg, Robert
2023-01-01

Abstract

Hyperbolic curvature flow is a geometric evolution equation that in the plane can be viewed as the natural hyperbolic analogue of curve shortening flow. It was proposed by Gurtin and Podio-Guidugli [SIAM J. Math. Anal., 22 (1991), pp. 575–586] to model certain wave phenomena in solid-liquid interfaces. We introduce a semidiscrete finite difference method for the approximation of hyperbolic curvature flow and prove error bounds for natural discrete norms. We also present numerical simulations, including the onset of singularities starting from smooth strictly convex initial data.
2023
4
Deckelnick, Klaus; Nürnberg, Robert
Discrete Hyperbolic Curvature Flow in the Plane / Deckelnick, Klaus; Nürnberg, Robert. - In: SIAM JOURNAL ON NUMERICAL ANALYSIS. - ISSN 0036-1429. - 61:4(2023), pp. 1835-1857. [10.1137/22M1493112]
File in questo prodotto:
File Dimensione Formato  
hmcf.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.69 MB
Formato Adobe PDF
2.69 MB Adobe PDF Visualizza/Apri
hmcf_accepted.pdf

accesso aperto

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Creative commons
Dimensione 946.28 kB
Formato Adobe PDF
946.28 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/384849
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact