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Abstract

Hyperbolic curvature flow is a geometric evolution equation that in the plane can be
viewed as the natural hyperbolic analogue of curve shortening flow. It was proposed by
Gurtin and Podio-Guidugli (1991) to model certain wave phenomena in solid-liquid inter-
faces. We introduce a semidiscrete finite difference method for the approximation of hyper-
bolic curvature flow and prove error bounds for natural discrete norms. We also present
numerical simulations, including the onset of singularities starting from smooth strictly con-
vex initial data.
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1 Introduction

The analytical and numerical study of parabolic geometric evolution equations, such as mean
curvature flow, surface diffusion and Willmore flow, to name a few, has received considerable
attention in the literature over the last few decades, see e.g. [19, 14, 7, 22, 21, 6, 5, 2, 8, 18, 1].
On the other hand, hyperbolic evolution laws for moving interfaces have been studied far less. In
this paper, we are going to investigate the numerical approximation of the hyperbolic geometric
evolution equation

α∂�

t VΓ + βVΓ = κΓ on Γ(t), (1.1)

for a family of closed curves (Γ(t))t∈[0,T ] in R
2. Here VΓ denotes the velocity of (Γ(t))t∈[0,T ] in

the direction of the normal νΓ, ∂
�

t is the normal time derivative on (Γ(t))t∈[0,T ], and κΓ denotes
the curvature of Γ(t). Our sign convention is such that the unit circle with outward normal has
curvature κΓ = −1. The flow (1.1) corresponds to the evolution law proposed in [11, (1.2)],
in the case of an isotropic surface energy and in the absence of external forcings, where it was
suggested as a model for the evolution of melting-freezing waves at the solid-liquid interface of
crystals such as 4He helium. Here the parameters α ∈ R≥0 and β ∈ R≥0 play the role of an
effective density and a kinetic coefficient, respectively. In the special case α = 1 and β = 0 we
obtain the hyperbolic geometric evolution law

∂�

t VΓ = κΓ on Γ(t), (1.2)
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while the choices α = 0 and β = 1 yield the well-known (mean) curvature flow, or curve
shortening flow. However, since in this work we are interested in the hyperbolic case, we shall
from now on set α = 1 for simplicity. We remark that in order to close the geometric evolution
equation (1.1), the initial conditions

Γ(0) = Γ0 and VΓ |t=0= VΓ,0

need to be prescribed, where Γ0 defines the initial curve and VΓ,0 : Γ0 → R gives an initial
normal velocity.

Let us consider a parametric description of the evolving curves, i.e. Γ(t) = x(I, t) for some
mapping x : I × [0, T ] → R

2, where I = R/Z is the periodic interval [0, 1]. We denote by

τ =
xρ
|xρ|

, ν = τ⊥ =
x⊥ρ
|xρ|

and κν =
τρ
|xρ|

=
1

|xρ|
( xρ
|xρ|

)
ρ
, (1.3)

the unit tangent, the unit normal and the curvature vector, respectively, so that e.g. ν = νΓ ◦ x
and κ = κΓ ◦ x. Here and throughout ·⊥ denotes the anti-clockwise rotation through π

2 . We
shall show in Lemma 2.1 below that if x is a solution of the system

xtt + βxt =
1

|xρ|
( xρ
|xρ|

)
ρ
− (xt · τt)τ in I × (0, T ], (1.4a)

x(·, 0) = x0, xt(·, 0) = V0ν(·, 0) in I, (1.4b)

then the curves (Γ(t))t∈[0,T ] evolve according to (1.1) with α = 1. In the above, x0 : I → R
2 is a

parameterization of the given initial curve Γ0 and V0 = VΓ,0 ◦ x0 is induced by the given initial
normal velocity VΓ,0. The introduction of the second term on the right hand side of (1.4a) has
the effect that the parameterization x is normal, i.e. it satisfies xt · τ = 0, see also Lemma 2.1.
The system (1.4) in the case β = 0 has been studied in [15, 16], see also [12]. In particular, it
is shown in [15] that if Γ(0) is strictly convex, and if the initial velocity V0ν(·, 0) does not point
outwards anywhere on Γ(0), then the solution to (1.4) exists on a finite time interval [0, Tmax)
and the curves Γ(t) remain strictly convex. Furthermore, as t → Tmax, Γ(t) either shrinks to a
point or converges to a convex curve with discontinuous curvature.

One may wonder whether it is possible to replace (1.4a) by the simpler hyperbolic equation

xtt =
1

|xρ|
( xρ
|xρ|

)
ρ

in I × (0, T ], (1.5)

which has been considered in e.g. [13] after having been proposed by Yau in [23, p. 242]. However,
in contrast to (1.4), it is not clear whether solutions to (1.5) with the initial conditions (1.4b)
parameterize solutions to the flow (1.2). In fact, numerical evidence in Section 5.4, below,
suggests that solutions to (1.4) and (1.5), (1.4b) parameterize different curve evolutions.

An alternative hyperbolic geometric evolution equation, that is similar to (1.4), and which has
been considered in [17], is described by

xtt =
1
2(|xt|

2 + 1)
1

|xρ|
( xρ
|xρ|

)
ρ
− (xt · τt)τ in I × (0, T ], x(·, 0) = x0, xt(·, 0) = V0ν(·, 0) in I.

(1.6)
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It can be shown that solutions to (1.6) also represent normal parameterizations of curves. An
interesting aspect of (1.6) in terms of the analysis is that its solutions satisfy the energy conser-
vation

1
2

d

dt

∫

I

(|xt|2 + 1)|xρ| dρ = 0.

In contrast, for the flow (1.4) a conditional decay property can be shown for the energy
1
2

∫
I
(|xt|2 + 2)|xρ| dρ, see Remark 2.2 below, something that we will utilize for the numerical

analysis presented in this paper. Let us finally mention that geometric second order hyperbolic
PDEs have recently been used in [3] for applications in image processing.

As regards the numerical approximation of hyperbolic geometric evolution equations in the
literature, we are only aware of the works [20] and [9]. In the former an algorithm for the
evolution of polygonal curves under crystalline hyperbolic curvature flow is presented, which
corresponds to (1.1) for a crystalline, anisotropic surface energy. On the other hand, in [9]
a level-set approach, which is based on a threshold algorithm of BMO type, is used for the
numerical solution of (1.5).

In this paper we will present a finite difference approximation of (1.4) and prove an error bound
for it. To the best of our knowledge this is the first result on the numerical analysis for a
hyperbolic geometric evolution equation in the literature.

The remainder of the paper is organized as follows. In Section 2 we show that curves Γ(t) that are
parameterized by solutions of (1.4) evolve according to (1.1). We also derive several properties
of these solutions. In Section 3 we introduce our semidiscrete finite difference approximation
and state our main result, Theorem 3.5. Its proof is presented in Section 4. Finally, in Section 5
we suggest a fully discrete scheme and present several numerical simulations for it, including a
convergence experiment and simulations that lead to nonvanishing singularities in finite time.

2 Mathematical formulation

Consider a family (Γ(t))t∈[0,T ] of evolving curves that are given by Γ(t) = x(I, t), where x :
I × [0, T ] → R

2 satisfies |xρ| > 0 in I × [0, T ]. Then the unit normal on Γ, the curvature of Γ,
the normal velocity of Γ as well as the normal time derivative on Γ are defined by the following
identities in I, see e.g. [1]:

νΓ ◦ x = ν, κΓ ◦ x = κ, VΓ ◦ x = xt · ν, (∂�

t f) ◦ x = (f ◦ x)t − (f ◦ x)sxt · τ, (2.1)

where ∂s = |xρ|−1∂ρ denotes differentiation with respect to arclength s. We stress that the
definitions of the above quantities are independent of the chosen parameterization. The following
lemma establishes the connection to the evolution law (1.1) and derives additional properties of
x that will be useful in the subsequent analysis.

Lemma. 2.1. Suppose that x : I×[0, T ] → R2 is a solution of (1.4). Then the curves (Γ(t))t∈[0,T ]

with Γ(t) = x(I, t) evolve according to (1.1). Furthermore, x is a normal parameterization, i.e.

xt · τ = 0 in I × [0, T ] (2.2)

and satisfies
∂t|xρ| = −|xρ|xt · xtt − β|xρ| |xt|2 in I × [0, T ]. (2.3)
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Proof. Using (1.4a) and (1.3) we deduce that

(xt · τ)t = xtt · τ + xt · τt = (κν − (xt · τt)τ − βxt) · τ + xt · τt = −βxt · τ.

In view of (1.4b) we have (xt · τ) |t=0= 0 which implies (2.2). With the help of (2.1) and (2.2)
we now deduce

(∂�

t VΓ) ◦ x+ βVΓ ◦ x = [(xt · ν)t − (xt · ν)sxt · τ ] + βxt · ν
= xtt · ν + xt · νt + βxt · ν = xtt · ν + βxt · ν
= κν · ν = κ = κΓ ◦ x in I × [0, T ],

where we used that 0 = 1
2(|ν|2)t = νt · ν, (1.3) and (1.4a). Thus (1.1) holds on Γ(t). Finally,

recalling again (2.2) and (1.4a), we obtain

∂t|xρ| = xtρ · τ = −xt · τρ = −|xρ|xt · xtt − β|xρ| |xt|2 in I × [0, T ], (2.4)

which proves (2.3).

Remark. 2.2. Using (2.4) and (2.2) we derive the following energy law

1
2

d

dt

∫

I

(|xt|2 + 2)|xρ| dρ = 1
2

∫

I

|xt|2∂t|xρ| dρ+
∫

I

xt · xtt|xρ|+ ∂t|xρ| dρ

= −1
2

∫

I

|xt|2xt · τρ dρ− β

∫

I

|xt|2|xρ| dρ

= −1
2

∫

I

(xt · ν)3κ|xρ| dρ− β

∫

I

(xt · ν)2|xρ| dρ, (2.5)

which corresponds to [11, (4.6)] in the absence of external forces. An adaptation of this relation
to the error between continuous and discrete solution will be at the heart of our error analysis.

For the remainder of the paper we make the following regularity assumptions concerning the
solution x.

Assumption. 2.3. x : I × [0, T ] → R
2 is a solution of (1.4) such that ∂it∂

j
ρx exist and are

continuous on I× [0, T ] for all i, j ∈ N∪{0} with 2i+ j ≤ 4. Furthermore, |xρ| > 0 in I× [0, T ].

Assumption 2.3 implies in particular that there exist constants 0 < c0 ≤ C0 such that

c0 ≤ |xρ| ≤ C0 in I × [0, T ], max
I×[0,T ]

(|τρ|+ |xt|+ |xtρ|) ≤ C0. (2.6)

3 Finite difference discretization

We shall employ a finite difference scheme in order to discretize (1.4) in space. To do so, let us
introduce the set of grid points Gh := {ρ1, . . . , ρJ} ⊂ I, where ρj = jh, j = 0, . . . , J , and h = 1

J

for J ≥ 2. In order to account for our periodic setting we always identify ρ0 with ρJ . For a
grid function v : Gh → R

2 we write vj := v(ρj), j = 1, . . . , J , and in addition set v0 = vJ and
vJ+1 = v1 in view of the periodicity of I. We associate with v the backward difference quotient:

δvj :=
vj − vj−1

h
, j = 1, . . . , J (3.1)
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and introduce the following discrete norms

‖v‖0,h :=
(
h

J∑

j=1

|vj |2
) 1

2

, ‖v‖1,h :=
(
h

J∑

j=1

(
|vj |2 + |δvj |2

)) 1

2

. (3.2)

Let xh : Gh → R
2 be a grid function that will play the role of a discrete parameterization of

a curve. Then on Ij = [ρj−1, ρj ], the associated discrete length element qhj and the discrete

tangent τhj are given by

qhj = |δxhj |, τhj =
1

qhj
δxhj , j = 1, . . . , J.

It will be convenient to also introduce the averaged vertex tangent θhj via

θhj =
τhj + τhj+1

|τhj + τhj+1|
, provided that τhj + τhj+1 6= 0, j = 1, . . . , J. (3.3)

Clearly,

(τhj+1 − τhj ) · θhj = (τhj+1 − τhj ) ·
τhj + τhj+1

|τhj + τhj+1|
=

1

|τhj + τhj+1|
(|τhj+1|2 − |τhj |2) = 0. (3.4)

Lemma. 3.1. Let x ∈ C4(I;R2) such that c0 ≤ |xρ| ≤ C0 in I and set τ =
xρ

|xρ| as well as

xj = x(ρj), qj = |δxj |, and τj =
1

qj
δxj , j = 1, . . . , J.

Then there exists h∗ > 0 such that for all 0 < h ≤ h∗ and all j = 1, . . . , J we have

1
2c0 ≤ qj ≤ 2C0 (3.5)

and

1
2(qj + qj+1) = |xρ(ρj)|+O(h2); (3.6a)

τj + τj+1 = 2 τ(ρj) +O(h2); (3.6b)

τj+1 − τj
h

= τρ(ρj) +O(h2). (3.6c)

Proof. A Taylor expansion yields

δxj+1 =
xj+1 − xj

h
= xρ +

h

2
xρρ +

h2

6
xρρρ +O(h3),

where all the derivatives of x, and τ , in this proof are evaluated at ρj . Hence

q2j+1 = |xρ|2 + hxρρ · xρ +
h2

4
|xρρ|2 +

h2

3
xρρρ · xρ +O(h3)

= |xρ|2
(
1 + h

xρρ
|xρ|

· τ + h2
[
1
4

|xρρ|2
|xρ|2

+ 1
3

xρρρ
|xρ|

· τ
]
+O(h3)

)
,
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and with
√
1 + ε = 1 + 1

2ε− 1
8ε

2 +O(ε3) it therefore follows that

qj+1 = |xρ|
(
1 +

h

2

xρρ
|xρ|

· τ + h2
[
1
8

|xρρ|2
|xρ|2

+ 1
6

xρρρ
|xρ|

· τ − 1
8

(xρρ · τ)2
|xρ|2

])
+O(h3).

Moreover, since τj+1 =
1

qj+1
δxj+1 and 1

1+ε
= 1− ε+ ε2 +O(ε3), we have that

τj+1 = τ +
h

2
τρ + h2

[
1
6

xρρρ
|xρ|

−
[
1
8

|xρρ|2
|xρ|2

+ 1
6

xρρρ
|xρ|

· τ − 3
8

(xρρ · τ)2
|xρ|2

]
τ − 1

4(
xρρ
|xρ|

· τ) xρρ|xρ|

]
+O(h3),

where we used that
xρρ
|xρ|

− (
xρρ
|xρ|

· τ)τ =
( xρ
|xρ|

)
ρ
= τρ. In a similar way one finds that

qj = |xρ|
(
1− h

2

xρρ
|xρ|

· τ + h2
[
1
8

|xρρ|2
|xρ|2

+ 1
6

xρρρ
|xρ|

· τ − 1
8

(xρρ · τ)2
|xρ|2

])
+O(h3);

τj = τ − h

2
τρ + h2

[
1
6

xρρρ
|xρ|

−
[
1
8

|xρρ|2
|xρ|2

+ 1
6

xρρρ
|xρ|

· τ − 3
8

(xρρ · τ)2
|xρ|2

]
τ − 1

4(
xρρ
|xρ|

· τ) xρρ|xρ|

]
+O(h3).

From the above we infer that (3.5) holds provided that 0 < h ≤ h∗. The estimates (3.6) also
follow immediately.

In view of (3.6a) a natural semidiscrete finite difference approximation of (1.4) is now defined
as follows. Find xh : Gh × [0, T ] → R

2 such that

ẍhj + βẋhj =
2

qhj + qhj+1

τhj+1 − τhj
h

− (ẋhj · θ̇hj )θhj in [0, T ], j = 1, . . . , J ; (3.7a)

xhj (0) = x0(ρj), ẋ
h
j (0) = V0(ρj)θ

h,⊥
j (0), j = 1, . . . , J. (3.7b)

Standard ODE theory implies that the above system has a unique solution on some interval
[0, Th). Let us begin by deriving discrete analogues of (2.2) and (2.3).

Lemma. 3.2. Let xh : Gh × [0, Th) → R
2 be a solution of (3.7). Then we have in [0, Th) and for

all j = 1, . . . , J that

ẋhj · θhj = 0; (3.8a)

q̇hj + 1
4(q

h
j−1 + qhj )

(
ẋhj−1 · ẍhj−1 + β|ẋhj−1|2

)
+ 1

4 (q
h
j + qhj+1)

(
ẋhj · ẍhj + β|ẋhj |2

)
= 0. (3.8b)

Proof. It follows from (3.7a), (3.4) and the fact that |θhj | = 1 that

(ẋhj · θhj )t = ẍhj · θhj + ẋhj · θ̇hj = −β ẋhj · θhj , j = 1, . . . , J.

Since ẋhj (0) · θhj (0) = 0 by (3.7b), we deduce (3.8a). In particular, ẋhj · τhj = −ẋhj · τhj+1 and hence

q̇hj =
ẋhj − ẋhj−1

h
· τhj = −1

2 ẋ
h
j ·

τhj+1 − τhj
h

− 1
2 ẋ

h
j−1 ·

τhj − τhj−1

h

= −1
4(q

h
j + qhj+1)

(
ẋhj · ẍhj + β|ẋhj |2

)
− 1

4(q
h
j−1 + qhj )

(
ẋhj−1 · ẍhj−1 + β|ẋhj−1|2

)
,

where the last equation is a consequence of (3.7a) and (3.8a). This proves (3.8b).

We also have the following discrete analogue of Remark 2.2, where for simplicity we consider
only the case β = 0.
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Lemma. 3.3. Let xh : Gh × [0, Th) → R
2 be a solution of (3.7) with β = 0. Then we have in

[0, Th) that

1
2

d

dt
h

J∑

j=1

[
1
2(q

h
j + qhj+1)|ẋhj |2 + 2qhj

]
= 1

2h

J∑

j=1

q̇hj
1
2(|ẋ

h
j−1|2 + |ẋhj |2), (3.9)

with q̇hj satisfying (3.8b).

Proof. We compute, on noting (3.7a) and (3.8a), that

1
2

d

dt
h

J∑

j=1

1
2 (q

h
j + qhj+1)|ẋhj |2 = 1

2h

J∑

j=1

1
2(q̇

h
j + q̇hj+1)|ẋhj |2 + h

J∑

j=1

1
2 (q

h
j + qhj+1)ẋ

h
j · ẍhj

= 1
2h

J∑

j=1

q̇hj
1
2(|ẋ

h
j−1|2 + |ẋhj |2) + h

J∑

j=1

ẋhj ·
τhj+1 − τhj

h

= 1
2h

J∑

j=1

q̇hj
1
2(|ẋ

h
j−1|2 + |ẋhj |2)− h

J∑

j=1

ẋhj − ẋhj−1

h
· τhj

= 1
2h

J∑

j=1

q̇hj
1
2(|ẋhj−1|2 + |ẋhj |2)−

d

dt
h

J∑

j=1

qhj ,

which is the desired result (3.9).

Observe that the right hand side of (3.9), in view of (3.8b), approximates the expression

− 1
2

∫

I

|xρ|(xt · xtt)|xt|2 dρ = −1
2

∫

I

|xρ|(κxt · ν)|xt|2 dρ, (3.10)

where we have noted (1.4a), (1.3) and (2.2). As (3.10) agrees with the right hand side in (2.5)
with β = 0, recall again (2.2), Lemma 3.3 can be viewed as a discrete analogue of Remark 2.2.

We stress that utilizing a suitable variant of (3.9) will be at the heart of our error analysis in
Section 4. In particular, ẋhj will be replaced by the time derivative of the error between x and

xh at the point ρj , see (4.4) below for the precise details.

Let us next consider the consistency errors for the scheme (3.7a) and for the property (3.8b).

Lemma. 3.4. Let x be the solution of (1.4). Define

Rj := ẍj + βẋj −
2

qj + qj+1

τj+1 − τj
h

+ (ẋj · τt(ρj , ·))τ(ρj , ·); (3.11a)

R̃j := q̇j +
1
4(qj−1 + qj)

(
ẋj−1 · ẍj−1 + β|ẋj−1|2

)
+ 1

4(qj + qj+1)
(
ẋj · ẍj + β|ẋj |2

)
. (3.11b)

Then there exists a constant C1 such that

max
j=1,...,J

(
|Rj(t)|+ |R̃j(t)|

)
≤ C1h

2, t ∈ [0, T ]. (3.12)

Proof. The bound on Rj is a direct consequence of Lemma 3.1. In order to analyze R̃j we
deduce from (3.6c) that τj±1 = τj ± hτρ(ρj , ·) +O(h2), and hence by (3.6b)

τj =
1
2

τj + τj+1

2
+ 1

2

τj−1 + τj
2

+O(h2) = 1
2

(
τ(ρj , ·) + τ(ρj−1, ·)

)
+O(h2).
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Combining this relation with the fact that

ẋj − ẋj−1

h
= 1

2

(
xtρ(ρj−1, ·) + xtρ(ρj , ·)

)
+O(h2)

we obtain

q̇j =
ẋj − ẋj−1

h
· τj = 1

4

(
xtρ(ρj−1, ·) + xtρ(ρj , ·)

)
·
(
τ(ρj−1, ·) + τ(ρj , ·)

)
+O(h2)

= 1
2xtρ(ρj−1, ·) · τ(ρj−1, ·) + 1

2xtρ(ρj , ·) · τ(ρj, ·)
− 1

4

(
xtρ(ρj, ·) − xtρ(ρj−1, ·)

)
·
(
τ(ρj , ·)− τ(ρj−1, ·)

)
+O(h2)

= 1
2xtρ(ρj−1, ·) · τ(ρj−1, ·) + 1

2xtρ(ρj , ·) · τ(ρj, ·) +O(h2)

= −1
2 |xρ(ρj−1, ·)|

(
ẋj−1 · ẍj−1 + β|ẋj−1|2

)
− 1

2 |xρ(ρj , ·)|
(
ẋj · ẍj + β|ẋj |2

)
+O(h2),

where we have used (2.3). Now the bound on R̃j follows with the help of (3.6a).

In view of Lemma 3.4 we expect second order convergence for our scheme. As our main result
we prove that this is indeed the case, where the error is measured in discrete integral norms that
are natural for a second order system of hyperbolic PDEs.

Theorem. 3.5. Suppose that Assumption 2.3 is satisfied. Then there exists h0 > 0 such that
for 0 < h ≤ h0 the problem (3.7) has a unique solution xh : Gh × [0, T ] → R

2 and the following
error bounds hold:

max
0≤t≤T

(
‖x(t)− xh(t)‖1,h + ‖ẋ(t)− ẋh(t)‖0,h

)
≤ Ch2. (3.13)

Here, and throughout, C denotes a generic positive constant independent of the mesh parameter
h.

4 Proof of Theorem 3.5

Let us abbreviate

xj(t) = x(ρj , t), qj(t) = |δxj(t)|, and τj(t) =
1

qj(t)
δxj(t), j = 1, . . . , J,

where x denotes the solution of (1.4). Furthermore, we let

T̂h = sup
{
t̂ ∈ [0, T ] : xh solves (3.7) on [0, t̂], with 1

4c0 ≤ qhj (t) ≤ 4C0 and

max
j=1,...,J

(
|τj(t)− τhj (t)|+ |ẋj(t)− ẋhj (t)|

)
≤ h

5

4 for 0 ≤ t ≤ t̂
}
. (4.1)

Here we have chosen the power h
5

4 in the definition (4.1) as a convenient value between 1 and
3
2 , where the latter power of h arises in the proof due to the application of an inverse inequality,
see (4.21) below.

Clearly, T̂h > 0. In view of (2.6) and Lemma 3.1 we may assume that

|τj + τj+1| ≥ 1 (4.2a)
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and hence

|τhj + τhj+1| ≥ |τj + τj+1| − |τhj − τj| − |τhj+1 − τj+1| ≥ 1− 2h
5

4 ≥ 1
2 , (4.2b)

provided that 0 < h ≤ h∗ is sufficiently small. Thus θhj (t) is well defined for j = 1, . . . , J and

t ∈ [0, T̂h). Furthermore, we have:

Lemma. 4.1. There exists 0 < h0 ≤ h∗ and a constant C2, which only depends on c0, C0 and β,
such that for all 0 < h ≤ h0 and 0 ≤ t < T̂h

max
j=1,...,J

(
|ẋhj (t)|+ |θ̇hj (t)|+ |ẍhj (t)|+ |q̇hj (t)|

)
≤ C2.

Proof. To begin, we deduce from (2.6) and (4.1) that

|ẋhj (t)| ≤ |xt(ρj , t)|+ |(ẋj − ẋhj )(t)| ≤ C0 + h
5

4 ≤ 2C0,

provided that 0 < h ≤ h0 with h0 sufficiently small. Next, a straightforward calculation shows

that τ̇hj =
1

qhj

(
δẋhj − (δẋhj · τhj )τhj

)
and hence, on noting (4.1), (3.1) and (2.6), it holds that

|τ̇hj (t)| ≤
1

qhj (t)
|δẋhj (t)| ≤

4

c0

(
|δ(ẋhj − ẋj)(t)|+ |δẋj(t)|

)

≤ 8

c0

1

h
max
1≤k≤J

|(ẋhk − ẋk)(t)| +
4

c0
max
ρ∈I

|xtρ(ρ, t)| ≤
8

c0
h

1

4 +
4

c0
C0 ≤

8C0

c0
,

provided that 0 < h ≤ h0 with h0 sufficiently small. From this we deduce, on recalling (3.3) and
(4.2b), that

|θ̇hj (t)| ≤
|τ̇hj (t) + τ̇hj+1(t)|
|τhj (t) + τhj+1(t)|

≤ 2
16C0

c0
=

32C0

c0
.

In order to bound ẍhj , we first use (3.6c), (2.6) and (4.1) to show that

∣∣∣∣∣
τhj+1(t)− τhj (t)

h

∣∣∣∣∣ ≤
∣∣∣∣
τj+1(t)− τj(t)

h

∣∣∣∣+
2

h
max

k=1,...,J
|τk(t)− τhk (t)| ≤ 2C0 + 2h

1

4 ≤ 3C0,

provided that 0 < h ≤ h0 with h0 ≤ h∗ sufficiently small. If we combine this estimate with
(3.7a), (4.1) and the previously derived bounds on ẋhj and θ̇hj , we obtain

|ẍhj (t)| ≤ β|ẋhj (t)|+
2

qhj (t) + qhj+1(t)

∣∣∣∣∣
τhj+1(t)− τhj (t)

h

∣∣∣∣∣+ |ẋhj (t)| |θ̇hj (t)|

≤ 2βC0 +
4

c0
3C0 + 2C0

32C0

c0
= 2βC0 +

12C0

c0
+

64C2
0

c0
.

Finally, the bound on q̇hj is a consequence of (3.8b) and (4.1) using now in addition the bound

on ẍhj .
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Let us introduce the error ej(t) := xj(t)− xhj (t). We infer from (3.11a) and (3.7a) that

ëj + βėj −
2

qhj + qhj+1

(τj+1 − τhj+1)− (τj − τhj )

h

=
(
ẋhj · (θ̇hj − τt(ρj , ·)

)
τ(ρj, ·) + (ẋhj · θ̇hj )

(
θhj − τ(ρj, ·)

)
− (ėj · τt(ρj , ·))τ(ρj , ·)

+ 2
(qhj − qj) + (qhj+1 − qj+1)

(qj + qj+1)(qhj + qhj+1)

τj+1 − τj
h

+Rj

=:

5∑

k=1

T k
j . (4.3)

Taking the scalar product with h
2 (q

h
j + qhj+1)ėj , summing over j = 1, . . . , J and recalling

Lemma 4.1 yields

1
2h

d

dt

J∑

j=1

1
2 (q

h
j + qhj+1)|ėj |2 + βh

J∑

j=1

1
2 (q

h
j + qhj+1)|ėj |2 − h

J∑

j=1

(τj+1 − τhj+1)− (τj − τhj )

h
· ėj

= 1
2h

J∑

j=1

1
2 (q̇

h
j + q̇hj+1)|ėj |2 +

5∑

k=1

h

J∑

j=1

1
2(q

h
j + qhj+1)T

k
j · ėj

≤ Ch

J∑

j=1

|ėj |2 + h

5∑

k=1

J∑

j=1

1
2(q

h
j + qhj+1)T

k
j · ėj . (4.4)

While the above relation already provides us with some control on ėj , the treatment of the
elliptic part is more difficult. This is a consequence of the fact that the operator 1

|xρ|
( xρ

|xρ|
)
ρ
is

degenerate in tangential direction. It is therefore not possible to directly control δej , which we
split instead as follows:

δej = δxj − δxhj = qj(τj − τhj ) + (qj − qhj )τ
h
j . (4.5)

In the next step we will gain control on the difference of the tangents from the third term on the
left hand side of (4.4). To do so, we essentially adapt arguments from [4, Section 5] developed
for a finite element approach to the curve shortening flow. To begin, using summation by parts
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together with the fact that δxhj = qhj τ
h
j , we derive

− h

J∑

j=1

(τj+1 − τhj+1)− (τj − τhj )

h
· ėj

= h
J∑

j=1

(τj − τhj ) ·
ėj − ėj−1

h
= h

J∑

j=1

(τj − τhj ) ·
(
δẋj − δẋhj

)

= h

J∑

j=1

(
τhj · δẋhj − τj · δẋhj

)
+ h

J∑

j=1

(τj − τhj ) · δẋj

= h
d

dt

J∑

j=1

(
qhj − τj · δxhj

)
+ h

J∑

j=1

τ̇j · δxhj + h

J∑

j=1

(τj − τhj ) · δẋj

= h
d

dt

J∑

j=1

qhj (1− τj · τhj ) + h
J∑

j=1

qhj
qj

(
δẋj − (δẋj · τj)τj

)
· τhj + h

J∑

j=1

(τj − τhj ) · δẋj

= 1
2h

d

dt

J∑

j=1

qhj |τj − τhj |2 + h

J∑

j=1

(
qj − qhj
qj

δẋj · (τj − τhj ) +
1
2

qhj
qj

(δẋj · τj) |τj − τhj |2
)
.

If we insert the above relation into (4.4), note that β ≥ 0 and apply a Cauchy–Schwarz inequality
together with Lemma 3.1 and (4.1), we obtain

1
2h

d

dt

J∑

j=1

(
1
2 (q

h
j + qhj+1)|ėj |2 + qhj |τj − τhj |2

)

≤ Ch
J∑

j=1

(
|ėj |2 + (qj − qhj )

2 + |τj − τhj |2
)
+ h

5∑

k=1

J∑

j=1

1
2(q

h
j + qhj+1)T

k
j · ėj . (4.6)

Let us next consider the terms involving T k
j , k = 1, . . . , 5. To begin, note that (2.2) and (3.8a)

imply
τ(ρj , ·) · ėj = τ(ρj , ·) · (ẋj − ẋhj ) = −τ(ρj, ·) · ẋhj = ẋhj · (θhj − τ(ρj , ·)). (4.7)

Therefore the definition of T 1
j in (4.3) yields that

h

J∑

j=1

1
2 (q

h
j + qhj+1)T

1
j · ėj = h

J∑

j=1

1
2(q

h
j + qhj+1)

(
ẋhj · (θ̇hj − τt(ρj , ·))

)(
ẋhj · (θhj − τ(ρj , ·))

)

= 1
2h

d

dt

J∑

j=1

1
2(q

h
j + qhj+1)

(
ẋhj · (θhj − τ(ρj, ·))

)2 − 1
2h

J∑

j=1

1
2(q̇

h
j + q̇hj+1)

(
ẋhj · (θhj − τ(ρj , ·))

)2

− h

J∑

j=1

1
2 (q

h
j + qhj+1)

(
ẋhj · (θhj − τ(ρj , ·))

)(
ẍhj · (θhj − τ(ρj , ·))

)

≤ 1
2h

d

dt

J∑

j=1

1
2(q

h
j + qhj+1)

(
τ(ρj , ·) · ėj

)2
+ Ch

J∑

j=1

|θhj − τ(ρj , ·)|2,
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where in the last step we have used (4.7), as well as Lemma 4.1. Moreover, we have from (3.6b)
that

|θhj − τ(ρj , ·)| ≤
∣∣∣∣∣
τhj + τhj+1

|τhj + τhj+1|
− τj + τj+1

|τj + τj+1|

∣∣∣∣∣+
∣∣∣∣
τj + τj+1

|τj + τj+1|
− τ(ρj , ·)

∣∣∣∣

≤ 2

|τj + τj+1|
(
|τj − τhj |+ |τj+1 − τhj+1|

)
+ Ch2,

so that with (4.2a)

|θhj − τ(ρj, ·)|2 ≤ C(|τj − τhj |2 + |τj+1 − τhj+1|2) + Ch4. (4.8)

In particular, it follows that

h

J∑

j=1

1
2 (q

h
j + qhj+1)T

1
j · ėj ≤ 1

2h
d

dt

J∑

j=1

1
2(q

h
j + qhj+1)

(
τ(ρj , ·) · ėj

)2
+Ch

J∑

j=1

|τj − τhj |2 +Ch4. (4.9)

Next, we deduce with the help of Lemma 4.1, (4.1) and (4.8) that

h
J∑

j=1

1
2 (q

h
j + qhj+1)T

2
j · ėj ≤ Ch

J∑

j=1

|θhj − τ(ρj , ·)| |ėj | ≤ Ch
J∑

j=1

(
|τj − τhj |2 + |ėj |2

)
+ Ch4, (4.10)

while in view of (3.12)

h

J∑

j=1

1
2 (q

h
j + qhj+1)(T

3
j + T 5

j ) · ėj ≤ Ch

J∑

j=1

|ėj |2 + Ch4. (4.11)

Finally, with the help of (3.6c) and (2.6) we can bound

h

J∑

j=1

1
2(q

h
j + qhj+1)T

4
j · ėj ≤ Ch

J∑

j=1

(
|qj − qhj |+ |qj+1 − qhj+1|

) |τj+1 − τj|
h

|ėj |

≤ Ch
J∑

j=1

(
(qj − qhj )

2 + |ėj |2
)
+Ch4. (4.12)

If we insert (4.9), (4.10), (4.11) and (4.12) into the estimate (4.6) we obtain, upon subtracting
the first term on the right hand side of (4.9) from both sides of the inequality and on noting
|ėj |2 − (ėj · τ)2 = (ėj · ν)2, that

1
2h

d

dt

J∑

j=1

(
1
2(q

h
j + qhj+1)

(
ėj · ν(ρj, ·)

)2
+ qhj |τj − τhj |2

)

≤ Ch

J∑

j=1

(
|ėj |2 + (qj − qhj )

2 + |τj − τhj |2
)
+ Ch4. (4.13)
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Using (4.7), (4.8) and Lemma 4.1, we have

h
J∑

j=1

|ėj |2 = h
J∑

j=1

(
(ėj · τ(ρj , ·))2 + (ėj · ν(ρj , ·))2

)

= h

J∑

j=1

(
ẋhj · (θhj − τ(ρj, ·))

)2
+ h

J∑

j=1

(ėj · (ν(ρj , ·))2

≤ Ch

J∑

j=1

|τj − τhj |2 + Ch4 + h

J∑

j=1

(ėj · (ν(ρj , ·))2. (4.14)

If we insert (4.14) into (4.13) we find

φ′h(t) ≤ C3

(
h4 + φh(t) + ψh(t)

)
, (4.15)

where we have abbreviated

φh(t) := h

J∑

j=1

(
1
2(q

h
j + qhj+1)

(
ėj · ν(ρj , ·)

)2
+ qhj |τj − τhj |2

)
, ψh(t) := h

J∑

j=1

(qj − qhj )
2, (4.16)

and noted (4.1).

It remains to bound the function ψh, which controls the second part in (4.5). To do so we
combine (3.11b) and (3.8b) and obtain

q̇j − q̇hj = −1
4(qj−1 + qj)

(
ẋj−1 · ẍj−1 − ẋhj−1 · ẍhj−1

)
− 1

4(qj + qj+1)
(
ẋj · ẍj − ẋhj · ẍhj

)

+ 1
4

(
(qhj−1 − qj−1) + (qhj − qj)

)
ẋhj−1 · ẍhj−1 +

1
4

(
(qhj − qj) + (qhj+1 − qj+1)

)
ẋhj · ẍhj

− 1
4β(qj−1 + qj)

(
|ẋj−1|2 − |ẋhj−1|2

)
− 1

4β(qj + qj+1)
(
|ẋj |2 − |ẋhj |2

)

+ 1
4β
(
(qhj−1 − qj−1) + (qhj − qj)

)
|ẋhj−1|2 + 1

4β
(
(qhj − qj) + (qhj+1 − qj+1)

)
|ẋhj |2 + R̃j

= −1
8∂t

(
(qj−1 + qj)

(
|ẋj−1|2 − |ẋhj−1|2

))
− 1

8∂t

(
(qj + qj+1)

(
|ẋj |2 − |ẋhj |2

)

+ 1
8

(
q̇j−1 + q̇j

)(
|ẋj−1|2 − |ẋhj−1|2

)
+ 1

8

(
q̇j + q̇j+1

)(
|ẋj|2 − |ẋhj |2

)

+ 1
4

(
(qhj−1 − qj−1) + (qhj − qj)

)
ẋhj−1 · ẍhj−1 +

1
4

(
(qhj − qj) + (qhj+1 − qj+1)

)
ẋhj · ẍhj

− 1
4β(qj−1 + qj)

(
|ẋj−1|2 − |ẋhj−1|2

)
− 1

4β(qj + qj+1)
(
|ẋj |2 − |ẋhj |2

)

+ 1
4β
(
(qhj−1 − qj−1) + (qhj − qj)

)
|ẋhj−1|2 + 1

4β
(
(qhj − qj) + (qhj+1 − qj+1)

)
|ẋhj |2 + R̃j .

(4.17)

Recalling (1.4b) and (3.7b) we infer that qhj (0) = qj(0) as well as

|ėj(0)| = |ẋj(0)− ẋhj (0)| =
∣∣∣∣V0(ρj)

(
τ(ρj , 0)−

τj(0) + τj+1(0)

|τj(0) + τj+1(0)|
)⊥∣∣∣∣ ≤ Ch2 (4.18)

where we also made use of (3.6b). Thus we obtain after integrating (4.17) in time, on noting
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that ||a|2 − |b|2| ≤ (|a|+ |b|)|a− b| and on taking into account Lemma 4.1 and (3.12), that

|qj(t)− qhj (t)| ≤ C
(
|ėj−1(t)|+ |ėj(t)|

)
+ C

∫ t

0
|ėj−1(u)|+ |ėj(u)| du

+ C

∫ t

0
|(qj−1 − qhj−1)(u)| + |(qj − qhj )(u)| + |(qj+1 − qhj+1)(u)| du+ Ch2

≤ C
(
|ėj−1(t)|+ |ėj(t)|

)
+ C

(∫ t

0
|ėj−1(u)|2 + |ėj(u)|2 du

) 1

2

+ C
(∫ t

0
|(qj−1 − qhj−1)(u)|2 + |(qj − qhj )(u)|2 + |(qj+1 − qhj+1)(u)|2 du

) 1

2

+ Ch2.

Taking the square and summing over j yields

h

J∑

j=1

(qj − qhj )
2(t) ≤ Ch

J∑

j=1

|ėj(t)|2 + C

∫ t

0
h

J∑

j=1

|ėj(u)|2 du+ Ch

∫ t

0
(qj − qhj )

2(u) du+ Ch4,

which together with (4.14) and (4.1) implies

ψh(t) ≤ C4

(
φh(t) +

∫ t

0

(
φh(u) + ψh(u)

)
du+ h4

)
. (4.19)

If we multiply (4.15) by 2C4, integrate with respect to time and combine the result with (4.19),
we obtain, on noting from (4.18) that φh(0) ≤ C5h

4, that

C4φh(t) + ψh(t) ≤ (2C4(C3 + C5) +C4)
(
h4 +

∫ t

0
φh(u) + ψh(u) du

)
,

from which we deduce with the help of Gronwall’s lemma that

φh(t) + ψh(t) ≤ Ch4, 0 ≤ t < T̂h. (4.20)

In particular, we have for j = 1, . . . , J and 0 ≤ t < T̂h that

|(τj − τhj )(t)| ≤ h−
1

2

(
h

J∑

k=1

|(τk − τhk )(t)|
) 1

2 ≤ Ch−
1

2

√
φh(t) ≤ Ch

3

2 ≤ 1
2h

5

4 , (4.21)

provided that 0 < h ≤ h0 and h0 is chosen smaller if necessary. In a similar way, on combining
(4.20), (4.16), (4.14), (3.5) and (2.6), we obtain that

|(ẋj − ẋhj )(t)| ≤ 1
2h

5

4 , 1
3c0 ≤ qhj (t) ≤ 3C0, j = 1, . . . , J, 0 ≤ t < T̂h.

If T̂h < T one could therefore continue the discrete solution to an interval [0, T̂h + ε], for some

ε > 0, such that 1
4c0 ≤ qhj (t) ≤ 4C0, |τj(t)− τhj (t)|+ |ẋj(t)− ẋhj (t)| ≤ h

5

4 for all j = 1, . . . , J and

0 ≤ t ≤ T̂h + ε, contradicting the definition of T̂h. Thus, T̂h = T . Finally, the bounds (3.13)
follow from (4.20), the definitions of φh and ψh, (4.14) and (4.5).
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5 Numerical results

5.1 Fully discrete scheme

For the numerical simulations presented in this section, we consider the following fully discrete
approximation of (3.7), where in order to discretize in time, we let tm = m∆t, m = 0, . . . ,M ,
with the uniform time step ∆t = T

M
> 0. We will approximate xh(tm) by the grid function

xm : Gh → R
2. Analogously to (3.3), we define θmj , j = 1, . . . , J , in terms of xm, and similarly

for qmj and τmj . Then, given suitable initial data x0, x−1 : Gh → R
2, for m = 0, . . . ,M − 1 we

find xm+1 : Gh → R
2 such that, for j = 1, . . . , J ,

1
2(q

m
j + qmj+1)h

xm+1
j − 2xmj + xm−1

j

(∆t)2
+ 1

4β(q
m
j + qmj+1)h

xm+1
j − xm−1

j

∆t

=
1

2qmj+1

δxm+1
j+1 − 1

2qmj
δxm+1

j +
1

2qmj+1

δxm−1
j+1 − 1

2qmj
δxm−1

j

− 1
2(q

m
j + qmj+1)h(

xmj − xm−1
j

∆t
·
θmj − θm−1

j

∆t
)θmj . (5.1)

Observe that we have chosen a linear discretization, that is analogous to a mass-lumped finite
element approximation of (1.4a), which uses a semi-implicit approximation of 1

|xρ|
( xρ

|xρ|
)
ρ
in the

spirit of the discretizations proposed for the linear wave equation in e.g. [10, §2.7]. We remark
that in contrast to the semidiscrete setting, recall (3.8a), it does not appear possible to prove
a fully discrete analogue of the crucial normal flow property (2.2) for the fully discrete scheme
(5.1).

In order to derive suitable initial data for (5.1), we observe that the solution to (1.4) satisfies
the Taylor expansion

x(·,∆t) = x+∆txt +
1
2(∆t)

2xtt +O((∆t)3)

= x+∆tV0ν +
1
2(∆t)

2

[
1

|xρ|
( xρ
|xρ|

)
ρ
− (V0ν · τt)τ − βV0ν

]
+O((∆t)3)

= x+∆tV0ν +
1
2(∆t)

2

[
1

|xρ|
( xρ
|xρ|

)
ρ
− 1

|xρ|
V0V0,ρτ − βV0ν

]
+O((∆t)3), (5.2)

where on the right hand side we always evaluate x, τ , ν, V0 and their derivatives at (·, 0). Note
in particular that in the last step we used that

τt · ν =
xt,ρ
|xρ|

· ν =
1

|xρ|
(V0ν)ρ · ν =

1

|xρ|
V0,ρ.

Inspired by (5.2) we choose as initial data

x0j = x0(ρj) and

x−1
j = x0j −∆tV0(ρj)θ

0,⊥
j

+ 1
2(∆t)

2

[
2

q0j + q0j+1

(
1

h

(
δx0j+1

q0j+1

−
δx0j
q0j

)
− V0(ρj)V0,ρ(ρj)θ

0
j

)
− βV0θ

0,⊥
j

]
,

for j = 1, . . . , J .
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We stress that all our presented numerical experiments fall within the scope of our main result,
Theorem 3.5. However, for nonconvex initial data, and for convex initial data with an initial
normal velocity V0 such that maxI V0 > 0, a rigorous existence and regularity theory for the
underlying PDE appears to be still lacking.

5.2 Convergence experiment

Our first set of numerical experiments is for the evolution of an initially circular curve when
β = 0. It can be shown that a family of circles with radius r(t) is a solution to (1.2) with
VΓ |t=0= V0 ∈ R for the initial outer normal velocity, if

r̈(t) = − 1

r(t)
in (0, T ], r(0) = r0, ṙ(0) = V0.

Upon integration we obtain that

1
2 (ṙ(t))

2 = ln r0 − ln r(t) + 1
2V

2
0 = ln

r0
r(t)

+ 1
2V

2
0 .

Hence

ṙ(t) = ±
√

2 ln
r0
r(t)

+ V 2
0 ,

which means that if V0 > 0, then r(t) will at first increase until it hits a maximum, where
2 ln r0

r(t) + V 2
0 = 0, after which it will decrease and shrink to a point in finite time. On the other

hand, if V0 ≤ 0 then the circle will monotonically shrink to a point.

For the special case V0 = 0, and on recalling the Gauss error function

erf(z) = 2√
π

∫ z

0
e−u2

du, erf ′(z) = 2√
π
e−z2 ,

we find that r(t) is the solution of

t−
√

π
2 r0 erf

(√
ln

r0
r(t)

)
= 0,

which means that

r(t) = r0 exp(−[erf−1(
√

2
π

t

r0
)]2). (5.3)

J max
m=0,...,M

‖x(tm)− xm‖1,h EOC max
m=1,...,M−1

‖ẋ(tm)− xm+1−xm−1

2∆t
‖0,h EOC

32 3.9796e-03 — 9.5331e-04 —
64 1.0059e-03 1.98 2.4960e-04 1.93
128 2.5256e-04 1.99 6.3995e-05 1.96
256 6.3254e-05 2.00 1.6211e-05 1.98
512 1.5827e-05 2.00 4.0803e-06 1.99

1024 3.9582e-06 2.00 1.0236e-06 2.00
2048 9.8980e-07 2.00 2.5634e-07 2.00

Table 1: Errors for the convergence test for (5.4), (5.3) with r0 = 1 over the time interval [0, 1]
for the scheme (5.1). We also display the experimental orders of convergence (EOC).
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For the true solution

x(ρ, t) = r(t)

(
cos g(2πρ)
sin g(2πρ)

)
, g(u) = u+ 0.1 sin(u), (5.4)

of (1.4) we compute approximations to the errors between x and xh, the solution to (3.7) with
V0 = 0, for the choice r0 = 1 on the time interval [0, 1] with the help of the fully discrete scheme
(5.1). In particular, for the sequence of discretization parameters h = 1

J
= 2−k, k = 5, . . . , 11,

we let ∆t = h and compare the grid interpolations of x and ẋ to their fully discrete analogues in
the discrete norms (3.2). These errors are reported in Table 1, where we observe the expected
second order convergence rates from Theorem 3.5.

5.3 Numerical experiments with constant initial velocity

Throughout the remainder of the numerical results section we choose the discretization param-
eters J = 256 and ∆t = 10−4. Moreover, we always let β = 0, unless stated otherwise. The
curve evolutions we visualize by plotting the polygonal curves Γm ⊂ R

2 defined by the vertices
{xmj }Jj=1 and at times we also show the evolution of the length of these curves, defined by

|Γm| = h
J∑

j=1

qmj =
J∑

j=1

|xmj − xmj−1|.

Moreover, we will often be interested in a possible blow-up in curvature, and so we will monitor
the quantity

Km
∞ = max

j=1,...,J

|δτmj |
qmj

as an approximation to the maximal value of |κ| = |τρ|
|xρ| , recall (1.3).

In all the numerical computations in this subsection, we will choose a constant initial velocity
V0(ρ) = V0.

As discussed above, for an initial circle with uniform initial normal velocity V0 = V0, depending
on the sign of V0 ∈ R the family of circles either expands at first and then shrinks, or shrinks
immediately. We visualize these different behaviours in Figure 1. In each case we observe a
smooth solution until the circles shrink to a point, meaning that |Γm| and 1/Km

∞ approach zero
at the same time.

For the next computations we choose as initial curve a mild ellipse, with major axis of length
3 and minor axis of length 2. The results for V0 = 0 are shown in Figure 2, where we note the
onset of a singularity in finite time. In particular, the curve appears to form two kinks, leading
to a blow-up in curvature. When we choose the initial normal velocity as V0 = 1, we obtain the
results shown in Figure 3. Once again we observe a blow-up in curvature, although this time
the curve does not exhibit two kinks. Instead it seems to approach a shape with four corners.
We note that the initial ellipse at first grows towards a circle. It then shrinks while momentarily
adopting an elliptic shape, but with the major and minor axes swapped with respect to the
initial data. Towards the end of the evolution a more circular shape appears again, which then
evolves to the limitting shape with the four corners, i.e. with four points where the curvature is
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Figure 1: Hyperbolic curvature flow starting from a unit circle. Above we show the evolution
of |Γm| over time for V0 = 0, V0 = 1 and V0 = −1 (from left to right). The final times for
these computations are T = 1.25, T = 3.45 and T = 0.65, respectively. Below we show the
corresponding evolutions of 1/Km

∞ over time.

discontinuous. We stress that the observed singularities in our numerical simulations are robust
with respect to the choice of discretization parameters. For example, refining the discretization
parameters to J = 512 and ∆t = 5 × 10−5 gave visually indistuingishable results compared to
Figure 3.

-1

-0.5

 0

 0.5

 1

-1.5 -1 -0.5  0  0.5  1  1.5

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

Figure 2: Hyperbolic curvature flow, with V0 = 0, starting from an ellipse. On the left we show
Γm at times t = 0, 0.1, . . . , 1.4, T = 1.47. We also show the evolutions of |Γm| (middle) and
1/Km

∞ (right) over time.

We are interested in the effect of the parameter β on these developing singularities, and would
expect some damping or smoothing to be observable for β > 0. Repeating the simulation from
Figure 2 with β = 2 yields the results in Figure 4, where we observe that the blow-up in curvature
now happens much later, when the curve itself is almost extinct. We also see a marked change
in the profile of the evolving curve. While in Figure 2 at late times the curve resembles an
ellipsoid aligned with the x2-axis, the evolution in Figure 4 for long times appears to approach
a circle, until towards the very end it starts to resemble an ellipsoid aligned with the x1-axis.
In addition, a repeat of Figure 3 now with β = 0.1 is shown in Figure 5, where once again we
note that visually the curve appears smoother for longer, until eventually the curvature blows
up due to facetting on the left and right sides of the curve.
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Figure 3: Hyperbolic curvature flow, with V0 = 1, starting from an ellipse. On the left we show
Γm at times t = 0, 0.3, . . . , T = 4.2. We also show the evolutions of |Γm| (middle) and 1/Km

∞
(right) over time.

Finally, we also consider some numerical experiments where the initial data is nonconvex. For
the simulation in Figure 6 we start from a smooth dumbbell-like initial curve. We observe that
the curve starts to shrink until it eventually exhibits two facets on the left and right, which leads
to a blow-up in the curvature. Repeating the simulation for the constant initial velocity V0 = 1
yields the results in Figure 7. Now the curve first expands vertically into a convex curve that
expands further, until it narrows on the x1-axis towards the origin to create a new nonconvex
shape that resembles a variant of the initial data that is now aligned with the x2-axis. At this
stage the curve begins again to expand into a convex shape that then shrinks until two developing
kinks at the top and bottom of the curve lead to a blow-up in curvature. Interestingly, when we
use the initial velocity V0 = −1 the curve soon self-intersects, see Figure 8, which is something
the parametric formulation is blind towards. Similarly to the evolution in Figure 6, the solution
approaches a blow-up in curvature when two facets are about to be created on the left and right
sides of the curve.

In conclusion we remark that the onset of a blow-up in curvature in finite time for strictly
convex initial data as observed in Figure 2 confirms the theoretical predictions in [15]. In
addition, Figure 3 demonstrates that the same can be observed for an outward initial velocity
V0ν(·, 0). Finally, from our remaining numerical simulations we conjecture that also nonconvex
initial data can exhibit the same phenomenon.

5.4 Numerical experiments with nonconstant initial velocity

In this final subsection we report on a numerical simulation with a nonconstant initial velocity
V0. In particular, we repeat the experiment from Figure 3, but now choose V0(ρ) = sin(2πρ),
with x0(ρ) = (32 cos(2πρ), sin(2πρ))

T . The evolution can be seen in Figure 9. Note that due
to the given initial velocity, the curve rises and shrinks at the same time. Towards the end
of the evolution a flat patch appears to develop at the bottom part of the curve. For a later
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Figure 4: Damped hyperbolic curvature flow, with β = 2 and V0 = 0, starting from an ellipse.
On the top we show Γm at times t = 0, 0.2, . . . , 2.4, T = 2.4423, as well as Γm separately at
times t = 2.44 and t = T . Below we show the evolutions of |Γm| (left) and 1/Km

∞ (right) over
time.

comparison, we also provide a plot of the discrete tangential velocity

‖Dtx
m+1 · θm‖0,h :=


h

J∑

j=1

∣∣∣∣∣
xm+1
j − xmj

∆t
· θmj

∣∣∣∣∣

2



1

2

.

over time in Figure 9. Since (5.1) is a discrete approximation of the normal flow (1.4), the
quantity stays nearly equal to zero throughout the evolution.

We mentioned in the introduction that a question of mathematical interest is whether solutions to
(1.5) parameterize curves evolving according to (1.2). We now provide some numerical evidence
that this is not the case. In order to numerically approximate solutions to (1.5), we naturally
adapt the scheme (5.1), for β = 0, by omitting the last term on the right hand side of (5.1). For
this new scheme we then repeat the computation from Figure 9 using exactly the same discrete
initial data. The ensuing evolution, shown in Figure 10, is close to what we observed before,
but ultimately differs. The differences are most pronounced in the final shape of Γm and in
the plot of 1/Km

∞ over time. We remark that a main difference between (1.4) and (1.5) is that
the former is a normal flow, while the latter allows for a nonzero tangential component of the
velocity xt. Once again this is confirmed by our numerical experiment, as can be seen from the
plot of ‖Dtx

m+1 · θm‖0,h in Figure 10, which seems to be monotonically increasing. We remark
that we repeated the simulations in Figures 9 and 10 with finer discretization parameters and
obtained visually indistinguishable results. Hence we are confident that the displayed evolution
provide numerical evidence that the two PDEs (1.4a) and (1.5), with the initial conditions (1.4b),
parameterize different curve evolutions.
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Figure 5: Damped hyperbolic curvature flow, with β = 0.1 and V0 = 1, starting from an ellipse.
On the left we show Γm at times t = 0, 0.3, . . . , 3.9, T = 4.1. We also show the evolutions of
|Γm| (middle) and 1/Km

∞ (right) over time.
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Figure 6: Hyperbolic curvature flow, with V0 = 0, starting from a smooth dumbbell. On top we
show Γm at times t = 0, 0.05, . . . , 0.2, T = 0.23. Below we show the evolutions of |Γm| (left) and
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References

[1] J. W. Barrett, H. Garcke, and R. Nürnberg, Parametric finite element approxi-
mations of curvature driven interface evolutions, in Handb. Numer. Anal., A. Bonito and
R. H. Nochetto, eds., vol. 21, Elsevier, Amsterdam, 2020, pp. 275–423.

[2] K. Deckelnick, G. Dziuk, and C. M. Elliott, Computation of geometric partial
differential equations and mean curvature flow, Acta Numer., 14 (2005), pp. 139–232.

[3] G. Dong, M. Hintermüller, and Y. Zhang, A class of second-order geometric quasi-
linear hyperbolic PDEs and their application in imaging, SIAM J. Imaging Sci., 14 (2021),
pp. 645–688.

[4] G. Dziuk, Discrete anisotropic curve shortening flow, SIAM J. Numer. Anal., 36 (1999),
pp. 1808–1830.

[5] K. Ecker, Regularity Theory for Mean Curvature Flow, Birkhäuser, Boston, 2004.
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