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Abstract. Hyperbolic curvature flow is a geometric evolution equation that in the plane can be
viewed as the natural hyperbolic analogue of curve shortening flow. It was proposed by Gurtin and
Podio-Guidugli [SIAM J. Math. Anal ., 22 (1991), pp. 575--586] to model certain wave phenomena
in solid-liquid interfaces. We introduce a semidiscrete finite difference method for the approximation
of hyperbolic curvature flow and prove error bounds for natural discrete norms. We also present
numerical simulations, including the onset of singularities starting from smooth strictly convex initial
data.
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1. Introduction. The analytical and numerical study of parabolic geometric
evolution equations, such as mean curvature flow, surface diffusion, and Willmore
flow, to name a few, has received considerable attention in the literature over the
last few decades; see, e.g., [19, 14, 7, 22, 21, 6, 5, 2, 8, 18, 1]. On the other hand,
hyperbolic evolution laws for moving interfaces have been studied far less. In this
paper, we are going to investigate the numerical approximation of the hyperbolic
geometric evolution equation

\alpha \partial \square t \scrV \Gamma + \beta \scrV \Gamma =\varkappa \Gamma on \Gamma (t)(1.1)

for a family of closed curves (\Gamma (t))t\in [0,T ] in \BbbR 2. Here \scrV \Gamma denotes the velocity of
(\Gamma (t))t\in [0,T ] in the direction of the normal \nu \Gamma , \partial 

\square 
t is the normal time derivative on

(\Gamma (t))t\in [0,T ], and \varkappa \Gamma denotes the curvature of \Gamma (t). Our sign convention is such
that the unit circle with outward normal has curvature \varkappa \Gamma =  - 1. The flow (1.1)
corresponds to the evolution law proposed in [11, equation (1.2)], in the case of an
isotropic surface energy and in the absence of external forcings, where it was suggested
as a model for the evolution of melting-freezing waves at the solid-liquid interface of
crystals such as 4He helium. Here the parameters \alpha \in \BbbR \geq 0 and \beta \in \BbbR \geq 0 play the role
of an effective density and a kinetic coefficient, respectively. In the special case \alpha = 1
and \beta = 0, we obtain the hyperbolic geometric evolution law

\partial \square t \scrV \Gamma =\varkappa \Gamma on \Gamma (t),(1.2)

while the choices \alpha = 0 and \beta = 1 yield the well-known (mean) curvature flow, or
curve shortening flow. However, since in this work we are interested in the hyperbolic
case, we shall from now on set \alpha = 1 for simplicity. We remark that in order to close
the geometric evolution equation (1.1), the initial conditions

*Received by the editors April 27, 2022; accepted for publication (in revised form) March 27,
2023; published electronically July 20, 2023.

https://doi.org/10.1137/22M1493112
\dagger 
Institut f\"ur Analysis und Numerik, Otto-von-Guericke-Universit\"at Magdeburg, 39106 Magde-

burg, Germany (klaus.deckelnick@ovgu.de).
\ddagger 
Dipartimento di Mathematica, Universit\`a di Trento, 38123 Trento, Italy (robert.nurnberg@

unitn.it).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1835

D
ow

nl
oa

de
d 

07
/2

5/
23

 to
 1

93
.2

05
.2

10
.7

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/22M1493112
mailto:klaus.deckelnick@ovgu.de
mailto:robert.nurnberg@unitn.it
mailto:robert.nurnberg@unitn.it


1836 KLAUS DECKELNICK AND ROBERT N\"URNBERG

\Gamma (0) = \Gamma 0 and \scrV \Gamma | t=0= \scrV \Gamma ,0

need to be prescribed, where \Gamma 0 defines the initial curve and \scrV \Gamma ,0 : \Gamma 0 \rightarrow \BbbR gives an
initial normal velocity.

Let us consider a parametric description of the evolving curves, i.e., \Gamma (t) = x(I, t)
for some mapping x : I\times [0, T ]\rightarrow \BbbR 2, where I =\BbbR /\BbbZ is the periodic interval [0,1]. We
denote by

\tau =
x\rho 
| x\rho | 

, \nu = \tau \bot =
x\bot \rho 
| x\rho | 

, and \varkappa \nu =
\tau \rho 
| x\rho | 

=
1

| x\rho | 

\biggl( 
x\rho 
| x\rho | 

\biggr) 
\rho 

(1.3)

the unit tangent, the unit normal, and the curvature vector, respectively, so that, e.g.,
\nu = \nu \Gamma \circ x and \varkappa =\varkappa \Gamma \circ x. Here and throughout, \cdot \bot denotes the anticlockwise rotation
through \pi 

2 . We shall show in Lemma 2.1 below that if x is a solution of the system

xtt + \beta xt =
1

| x\rho | 

\biggl( 
x\rho 
| x\rho | 

\biggr) 
\rho 

 - (xt \cdot \tau t)\tau in I \times (0, T ],(1.4a)

x(\cdot ,0) = x0, xt(\cdot ,0) = \scrV 0\nu (\cdot ,0) in I,(1.4b)

then the curves (\Gamma (t))t\in [0,T ] evolve according to (1.1) with \alpha = 1. In the above,
x0 : I \rightarrow \BbbR 2 is a parameterization of the given initial curve \Gamma 0 and \scrV 0 = \scrV \Gamma ,0 \circ x0 is
induced by the given initial normal velocity \scrV \Gamma ,0. The introduction of the second term
on the right-hand side of (1.4a) has the effect that the parameterization x is normal,
i.e., it satisfies xt \cdot \tau = 0; see also Lemma 2.1. The system (1.4) in the case \beta = 0 has
been studied in [15, 16]; see also [12]. In particular, it is shown in [15] that if \Gamma (0) is
strictly convex, and if the initial velocity \scrV 0\nu (\cdot ,0) does not point outwards anywhere
on \Gamma (0), then the solution to (1.4) exists on a finite time interval [0, Tmax) and the
curves \Gamma (t) remain strictly convex. Furthermore, as t\rightarrow Tmax, \Gamma (t) either shrinks to
a point or converges to a convex curve with discontinuous curvature.

One may wonder whether it is possible to replace (1.4a) by the simpler hyperbolic
equation

xtt =
1

| x\rho | 

\biggl( 
x\rho 
| x\rho | 

\biggr) 
\rho 

in I \times (0, T ],(1.5)

which has been considered in, e.g., [13] after having been proposed by Yau in [23,
p. 242]. However, in contrast to (1.4), it is not clear whether solutions to (1.5)
with the initial conditions (1.4b) parameterize solutions to the flow (1.2). In fact,
numerical evidence in section 5.4, below, suggests that solutions to (1.4) and (1.5),
(1.4b) parameterize different curve evolutions.

An alternative hyperbolic geometric evolution equation that is similar to (1.4)
and which has been considered in [17] is described by

xtt =
1
2 (| xt| 

2 + 1)
1

| x\rho | 

\biggl( 
x\rho 
| x\rho | 

\biggr) 
\rho 

 - (xt \cdot \tau t)\tau in I \times (0, T ],(1.6)

x(\cdot ,0) = x0, xt(\cdot ,0) = \scrV 0\nu (\cdot ,0) in I.

It can be shown that solutions to (1.6) also represent normal parameterizations of
curves. An interesting aspect of (1.6) in terms of the analysis is that its solutions
satisfy the energy conservation

1
2

d

dt

\int 
I

(| xt| 2 + 1)| x\rho | d\rho = 0.
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DISCRETE HYPERBOLIC CURVATURE FLOW IN THE PLANE 1837

In contrast, for the flow (1.4) a conditional decay property can be shown for the energy
1
2

\int 
I
(| xt| 2 + 2)| x\rho | d\rho (see Remark 2.2 below), something that we will utilize for the

numerical analysis presented in this paper. Let us finally mention that geometric
second order hyperbolic PDEs have recently been used in [3] for applications in image
processing.

As regards the numerical approximation of hyperbolic geometric evolution equa-
tions in the literature, we are only aware of the works [20, 9]. In the former, an
algorithm for the evolution of polygonal curves under crystalline hyperbolic curvature
flow is presented, which corresponds to (1.1) for a crystalline, anisotropic surface en-
ergy. On the other hand, in [9] a level-set approach, which is based on a threshold
algorithm of BMO type, is used for the numerical solution of (1.5).

In this paper, we will present a finite difference approximation of (1.4) and prove
an error bound for it. To the best of our knowledge, this is the first result on the
numerical analysis for a hyperbolic geometric evolution equation in the literature.

The remainder of the paper is organized as follows. In section 2, we show that
curves \Gamma (t) that are parameterized by solutions of (1.4) evolve according to (1.1).
We also derive several properties of these solutions. In section 3, we introduce our
semidiscrete finite difference approximation and state our main result, Theorem 3.5.
Its proof is presented in section 4. Finally, in section 5 we suggest a fully discrete
scheme and present several numerical simulations for it, including a convergence ex-
periment and simulations that lead to nonvanishing singularities in finite time.

2. Mathematical formulation. Consider a family (\Gamma (t))t\in [0,T ] of evolving
curves that are given by \Gamma (t) = x(I, t), where x : I \times [0, T ] \rightarrow \BbbR 2 satisfies | x\rho | > 0
in I \times [0, T ]. Then the unit normal on \Gamma , the curvature of \Gamma , and the normal velocity
of \Gamma , as well as the normal time derivative on \Gamma , are defined by the following identities
in I (see, e.g., [1]):

\nu \Gamma \circ x= \nu , \varkappa \Gamma \circ x=\varkappa , \scrV \Gamma \circ x= xt \cdot \nu , (\partial \square t f) \circ x= (f \circ x)t  - (f \circ x)sxt \cdot \tau ,
(2.1)

where \partial s = | x\rho |  - 1\partial \rho denotes differentiation with respect to arclength s. We stress that
the definitions of the above quantities are independent of the chosen parameterization.
The following lemma establishes the connection to the evolution law (1.1) and derives
additional properties of x that will be useful in the subsequent analysis.

Lemma 2.1. Suppose that x : I \times [0, T ] \rightarrow \BbbR 2 is a solution of (1.4). Then the
curves (\Gamma (t))t\in [0,T ] with \Gamma (t) = x(I, t) evolve according to (1.1). Furthermore, x is a
normal parameterization, i.e.,

xt \cdot \tau = 0 in I \times [0, T ],(2.2)

and satisfies

\partial t| x\rho | = - | x\rho | xt \cdot xtt  - \beta | x\rho | | xt| 2 in I \times [0, T ].(2.3)

Proof. Using (1.4a) and (1.3) we deduce that

(xt \cdot \tau )t = xtt \cdot \tau + xt \cdot \tau t = (\varkappa \nu  - (xt \cdot \tau t)\tau  - \beta xt) \cdot \tau + xt \cdot \tau t = - \beta xt \cdot \tau .
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1838 KLAUS DECKELNICK AND ROBERT N\"URNBERG

In view of (1.4b), we have (xt \cdot \tau )| t=0= 0, which implies (2.2). With the help of (2.1)
and (2.2) we now deduce

(\partial \square t \scrV \Gamma ) \circ x+ \beta \scrV \Gamma \circ x= [(xt \cdot \nu )t  - (xt \cdot \nu )sxt \cdot \tau ] + \beta xt \cdot \nu 
= xtt \cdot \nu + xt \cdot \nu t + \beta xt \cdot \nu = xtt \cdot \nu + \beta xt \cdot \nu 
=\varkappa \nu \cdot \nu =\varkappa =\varkappa \Gamma \circ x in I \times [0, T ],

where we used that 0 = 1
2 (| \nu | 

2)t = \nu t \cdot \nu , (1.3), and (1.4a). Thus, (1.1) holds on \Gamma (t).
Finally, recalling again (2.2) and (1.4a), we obtain

\partial t| x\rho | = xt\rho \cdot \tau = - xt \cdot \tau \rho = - | x\rho | xt \cdot xtt  - \beta | x\rho | | xt| 2 in I \times [0, T ],(2.4)

which proves (2.3).

Remark 2.2. Using (2.4) and (2.2) we derive the following energy law:

1
2

d

dt

\int 
I

(| xt| 2 + 2)| x\rho | d\rho = 1
2

\int 
I

| xt| 2\partial t| x\rho | d\rho +
\int 
I

xt \cdot xtt| x\rho | + \partial t| x\rho | d\rho (2.5)

= - 1
2

\int 
I

| xt| 2xt \cdot \tau \rho d\rho  - \beta 

\int 
I

| xt| 2| x\rho | d\rho 

= - 1
2

\int 
I

(xt \cdot \nu )3\varkappa | x\rho | d\rho  - \beta 

\int 
I

(xt \cdot \nu )2| x\rho | d\rho ,

which corresponds to [11, equation (4.6)] in the absence of external forces. An adap-
tation of this relation to the error between continuous and discrete solution will be at
the heart of our error analysis.

For the remainder of the paper, we make the following regularity assumptions
concerning the solution x.

Assumption 2.3. x : I \times [0, T ] \rightarrow \BbbR 2 is a solution of (1.4) such that \partial it\partial 
j
\rho x exist

and are continuous on I \times [0, T ] for all i, j \in \BbbN \cup \{ 0\} with 2i+ j \leq 4. Furthermore,
| x\rho | > 0 in I \times [0, T ].

Assumption 2.3 implies in particular that there exist constants 0< c0 \leq C0 such
that

c0 \leq | x\rho | \leq C0 in I \times [0, T ], max
I\times [0,T ]

(| \tau \rho | + | xt| + | xt\rho | )\leq C0.(2.6)

3. Finite difference discretization. We shall employ a finite difference scheme
in order to discretize (1.4) in space. To do so, let us introduce the set of grid points
\scrG h := \{ \rho 1, . . . , \rho J\} \subset I, where \rho j = jh, j = 0, . . . , J , and h = 1

J for J \geq 2. In order to
account for our periodic setting, we always identify \rho 0 with \rho J . For a grid function
v : \scrG h \rightarrow \BbbR 2, we write vj := v(\rho j), j = 1, . . . , J , and in addition set v0 = vJ and
vJ+1 = v1 in view of the periodicity of I. We associate with v the backward difference
quotient

\delta vj :=
vj  - vj - 1

h
, j = 1, . . . , J,(3.1)

and introduce the following discrete norms:

\| v\| 0,h :=

\Biggl( 
h

J\sum 
j=1

| vj | 2
\Biggr) 1

2

, \| v\| 1,h :=

\Biggl( 
h

J\sum 
j=1

\bigl( 
| vj | 2 + | \delta vj | 2

\bigr) \Biggr) 1
2

.(3.2)
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DISCRETE HYPERBOLIC CURVATURE FLOW IN THE PLANE 1839

Let xh : \scrG h \rightarrow \BbbR 2 be a grid function that will play the role of a discrete
parameterization of a curve. Then on Ij = [\rho j - 1, \rho j ] the associated discrete length
element qhj and the discrete tangent \tau hj are given by

qhj = | \delta xhj | , \tau hj =
1

qhj
\delta xhj , j = 1, . . . , J.

It will be convenient to also introduce the averaged vertex tangent \theta hj via

\theta hj =
\tau hj + \tau hj+1

| \tau hj + \tau hj+1| 
, provided that \tau hj + \tau hj+1 \not = 0, j = 1, . . . , J.(3.3)

Clearly,

(\tau hj+1  - \tau hj ) \cdot \theta hj = (\tau hj+1  - \tau hj ) \cdot 
\tau hj + \tau hj+1

| \tau hj + \tau hj+1| 
=

1

| \tau hj + \tau hj+1| 
(| \tau hj+1| 2  - | \tau hj | 2) = 0.(3.4)

Lemma 3.1. Let x \in C4(I;\BbbR 2) such that c0 \leq | x\rho | \leq C0 in I, and set \tau =
x\rho 

| x\rho | as
well as

xj = x(\rho j), qj = | \delta xj | and \tau j =
1

qj
\delta xj , j = 1, . . . , J.

Then there exists h\ast > 0 such that for all 0<h\leq h\ast and all j = 1, . . . , J we have

1
2c0 \leq qj \leq 2C0(3.5)

and

1
2 (qj + qj+1) = | x\rho (\rho j)| +\scrO (h2);(3.6a)

\tau j + \tau j+1 = 2 \tau (\rho j) +\scrO (h2);(3.6b)
\tau j+1  - \tau j

h
= \tau \rho (\rho j) +\scrO (h2).(3.6c)

Proof. A Taylor expansion yields

\delta xj+1 =
xj+1  - xj

h
= x\rho +

h

2
x\rho \rho +

h2

6
x\rho \rho \rho +\scrO (h3),

where all the derivatives of x, and \tau , in this proof are evaluated at \rho j . Hence,

q2j+1 = | x\rho | 2 + hx\rho \rho \cdot x\rho +
h2

4
| x\rho \rho | 2 +

h2

3
x\rho \rho \rho \cdot x\rho +\scrO (h3)

= | x\rho | 2
\biggl( 
1 + h

x\rho \rho 
| x\rho | 

\cdot \tau + h2
\biggl[ 
1
4

| x\rho \rho | 2

| x\rho | 2
+ 1

3

x\rho \rho \rho 
| x\rho | 

\cdot \tau 
\biggr] 
+\scrO (h3)

\biggr) 
,

and with
\surd 
1 + \varepsilon = 1+ 1

2\varepsilon  - 
1
8\varepsilon 

2 +\scrO (\varepsilon 3) it therefore follows that

qj+1 = | x\rho | 
\biggl( 
1 +

h

2

x\rho \rho 
| x\rho | 

\cdot \tau + h2
\biggl[ 
1
8

| x\rho \rho | 2

| x\rho | 2
+ 1

6

x\rho \rho \rho 
| x\rho | 

\cdot \tau  - 1
8

(x\rho \rho \cdot \tau )2

| x\rho | 2

\biggr] \biggr) 
+\scrO (h3).

Moreover, since \tau j+1 =
1

qj+1
\delta xj+1 and 1

1+\varepsilon = 1 - \varepsilon + \varepsilon 2 +\scrO (\varepsilon 3), we have that

\tau j+1

= \tau +
h

2
\tau \rho + h2

\biggl[ 
1
6

x\rho \rho \rho 
| x\rho | 

 - 
\biggl[ 
1
8

| x\rho \rho | 2

| x\rho | 2
+ 1

6

x\rho \rho \rho 
| x\rho | 

\cdot \tau  - 3
8

(x\rho \rho \cdot \tau )2

| x\rho | 2

\biggr] 
\tau  - 1

4 (
x\rho \rho 
| x\rho | 

\cdot \tau ) x\rho \rho 
| x\rho | 

\biggr] 
+\scrO (h3),
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1840 KLAUS DECKELNICK AND ROBERT N\"URNBERG

where we used that
x\rho \rho 

| x\rho |  - (
x\rho \rho 

| x\rho | \cdot \tau )\tau =
\bigl( x\rho 

| x\rho | 
\bigr) 
\rho 
= \tau \rho . In a similar way, one finds that

qj = | x\rho | 
\biggl( 
1 - h

2

x\rho \rho 
| x\rho | 

\cdot \tau + h2
\biggl[ 
1
8

| x\rho \rho | 2

| x\rho | 2
+ 1

6

x\rho \rho \rho 
| x\rho | 

\cdot \tau  - 1
8

(x\rho \rho \cdot \tau )2

| x\rho | 2

\biggr] \biggr) 
+\scrO (h3);

\tau j = \tau  - h

2
\tau \rho + h2

\biggl[ 
1
6

x\rho \rho \rho 
| x\rho | 

 - 
\biggl[ 
1
8

| x\rho \rho | 2

| x\rho | 2
+ 1

6

x\rho \rho \rho 
| x\rho | 

\cdot \tau  - 3
8

(x\rho \rho \cdot \tau )2

| x\rho | 2

\biggr] 
\tau  - 1

4 (
x\rho \rho 
| x\rho | 

\cdot \tau ) x\rho \rho 
| x\rho | 

\biggr] 
+\scrO (h3).

From the above we infer that (3.5) holds provided that 0 < h \leq h\ast . The estimates
(3.6) also follow immediately.

In view of (3.6a), a natural semidiscrete finite difference approximation of (1.4)
is now defined as follows. Find xh : \scrG h \times [0, T ]\rightarrow \BbbR 2 such that

\"xhj + \beta \.xhj =
2

qhj + qhj+1

\tau hj+1  - \tau hj
h

 - ( \.xhj \cdot \.\theta hj )\theta hj in [0, T ], j = 1, . . . , J ;(3.7a)

xhj (0) = x0(\rho j), \.xhj (0) = \scrV 0(\rho j)\theta 
h,\bot 
j (0), j = 1, . . . , J.(3.7b)

Standard ODE theory implies that the above system has a unique solution on some
interval [0, Th). Let us begin by deriving discrete analogues of (2.2) and (2.3).

Lemma 3.2. Let xh : \scrG h \times [0, Th) \rightarrow \BbbR 2 be a solution of (3.7). Then we have in
[0, Th) and for all j = 1, . . . , J that

\.xhj \cdot \theta hj = 0;(3.8a)

\.qhj + 1
4 (q

h
j - 1 + qhj )

\bigl( 
\.xhj - 1 \cdot \"xhj - 1 + \beta | \.xhj - 1| 2

\bigr) 
+ 1

4 (q
h
j + qhj+1)

\bigl( 
\.xhj \cdot \"xhj + \beta | \.xhj | 2

\bigr) 
= 0.

(3.8b)

Proof. It follows from (3.7a), (3.4), and the fact that | \theta hj | = 1 that

( \.xhj \cdot \theta hj )t = \"xhj \cdot \theta hj + \.xhj \cdot \.\theta hj = - \beta \.xhj \cdot \theta hj , j = 1, . . . , J.

Since \.xhj (0) \cdot \theta hj (0) = 0 by (3.7b), we deduce (3.8a). In particular, \.xhj \cdot \tau hj = - \.xhj \cdot \tau hj+1

and hence

\.qhj =
\.xhj  - \.xhj - 1

h
\cdot \tau hj = - 1

2 \.x
h
j \cdot 

\tau hj+1  - \tau hj
h

 - 1
2 \.x

h
j - 1 \cdot 

\tau hj  - \tau hj - 1

h
= - 1

4 (q
h
j + qhj+1)

\bigl( 
\.xhj \cdot \"xhj + \beta | \.xhj | 2

\bigr) 
 - 1

4 (q
h
j - 1 + qhj )

\bigl( 
\.xhj - 1 \cdot \"xhj - 1 + \beta | \.xhj - 1| 2

\bigr) 
,

where the last equation is a consequence of (3.7a) and (3.8a). This proves (3.8b).

We also have the following discrete analogue of Remark 2.2, where for simplicity
we consider only the case \beta = 0.

Lemma 3.3. Let xh : \scrG h \times [0, Th) \rightarrow \BbbR 2 be a solution of (3.7) with \beta = 0. Then
we have in [0, Th) that

1
2

d

dt
h

J\sum 
j=1

\bigl[ 
1
2 (q

h
j + qhj+1)| \.xhj | 2 + 2qhj

\bigr] 
= 1

2h

J\sum 
j=1

\.qhj
1
2 (| \.x

h
j - 1| 2 + | \.xhj | 2),(3.9)

with \.qhj satisfying (3.8b).
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DISCRETE HYPERBOLIC CURVATURE FLOW IN THE PLANE 1841

Proof. We compute, on noting (3.7a) and (3.8a), that

1
2

d

dt
h

J\sum 
j=1

1
2 (q

h
j + qhj+1)| \.xhj | 2 = 1

2h

J\sum 
j=1

1
2 ( \.q

h
j + \.qhj+1)| \.xhj | 2 + h

J\sum 
j=1

1
2 (q

h
j + qhj+1) \.x

h
j \cdot \"xhj

= 1
2h

J\sum 
j=1

\.qhj
1
2 (| \.x

h
j - 1| 2 + | \.xhj | 2) + h

J\sum 
j=1

\.xhj \cdot 
\tau hj+1  - \tau hj

h

= 1
2h

J\sum 
j=1

\.qhj
1
2 (| \.x

h
j - 1| 2 + | \.xhj | 2) - h

J\sum 
j=1

\.xhj  - \.xhj - 1

h
\cdot \tau hj

= 1
2h

J\sum 
j=1

\.qhj
1
2 (| \.x

h
j - 1| 2 + | \.xhj | 2) - 

d

dt
h

J\sum 
j=1

qhj ,

which is the desired result (3.9).

Observe that the right-hand side of (3.9), in view of (3.8b), approximates the
expression

 - 1
2

\int 
I

| x\rho | (xt \cdot xtt)| xt| 2 d\rho = - 1
2

\int 
I

| x\rho | (\varkappa xt \cdot \nu )| xt| 2 d\rho ,(3.10)

where we have noted (1.4a), (1.3), and (2.2). As (3.10) agrees with the right-hand
side in (2.5) with \beta = 0 (recall again (2.2)), Lemma 3.3 can be viewed as a discrete
analogue of Remark 2.2.

We stress that utilizing a suitable variant of (3.9) will be at the heart of our error
analysis in section 4. In particular, \.xhj will be replaced by the time derivative of the
error between x and xh at the point \rho j ; see (4.4) below for the precise details.

Let us next consider the consistency errors for the scheme (3.7a) and for the
property (3.8b).

Lemma 3.4. Let x be the solution of (1.4). Define

Rj := \"xj + \beta \.xj  - 
2

qj + qj+1

\tau j+1  - \tau j
h

+ ( \.xj \cdot \tau t(\rho j , \cdot ))\tau (\rho j , \cdot );(3.11a)

\~Rj := \.qj +
1
4 (qj - 1 + qj)

\bigl( 
\.xj - 1 \cdot \"xj - 1 + \beta | \.xj - 1| 2

\bigr) 
+ 1

4 (qj + qj+1)
\bigl( 
\.xj \cdot \"xj + \beta | \.xj | 2

\bigr) 
.

(3.11b)

Then there exists a constant C1 such that

max
j=1,...,J

\bigl( 
| Rj(t)| + | \~Rj(t)| 

\bigr) 
\leq C1h

2, t\in [0, T ].(3.12)

Proof. The bound on Rj is a direct consequence of Lemma 3.1. In order to
analyze \~Rj , we deduce from (3.6c) that \tau j\pm 1 = \tau j \pm h\tau \rho (\rho j , \cdot ) +\scrO (h2), and hence by
(3.6b)

\tau j =
1
2

\tau j + \tau j+1

2
+ 1

2

\tau j - 1 + \tau j
2

+\scrO (h2) = 1
2

\bigl( 
\tau (\rho j , \cdot ) + \tau (\rho j - 1, \cdot )

\bigr) 
+\scrO (h2).

Combining this relation with the fact that

\.xj  - \.xj - 1

h
= 1

2

\bigl( 
xt\rho (\rho j - 1, \cdot ) + xt\rho (\rho j , \cdot )

\bigr) 
+\scrO (h2),
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1842 KLAUS DECKELNICK AND ROBERT N\"URNBERG

we obtain

\.qj =
\.xj  - \.xj - 1

h
\cdot \tau j = 1

4

\bigl( 
xt\rho (\rho j - 1, \cdot ) + xt\rho (\rho j , \cdot )

\bigr) 
\cdot 
\bigl( 
\tau (\rho j - 1, \cdot ) + \tau (\rho j , \cdot )

\bigr) 
+\scrO (h2)

= 1
2xt\rho (\rho j - 1, \cdot ) \cdot \tau (\rho j - 1, \cdot ) + 1

2xt\rho (\rho j , \cdot ) \cdot \tau (\rho j , \cdot )
 - 1

4

\bigl( 
xt\rho (\rho j , \cdot ) - xt\rho (\rho j - 1, \cdot )

\bigr) 
\cdot 
\bigl( 
\tau (\rho j , \cdot ) - \tau (\rho j - 1, \cdot )

\bigr) 
+\scrO (h2)

= 1
2xt\rho (\rho j - 1, \cdot ) \cdot \tau (\rho j - 1, \cdot ) + 1

2xt\rho (\rho j , \cdot ) \cdot \tau (\rho j , \cdot ) +\scrO (h2)

= - 1
2 | x\rho (\rho j - 1, \cdot )| 

\bigl( 
\.xj - 1 \cdot \"xj - 1 + \beta | \.xj - 1| 2

\bigr) 
 - 1

2 | x\rho (\rho j , \cdot )| 
\bigl( 
\.xj \cdot \"xj + \beta | \.xj | 2

\bigr) 
+\scrO (h2),

where we have used (2.3). Now the bound on \~Rj follows with the help of (3.6a).

In view of Lemma 3.4, we expect second order convergence for our scheme. As
our main result we prove that this is indeed the case, where the error is measured
in discrete integral norms that are natural for a second order system of hyperbolic
PDEs.

Theorem 3.5. Suppose that Assumption 2.3 is satisfied. Then there exists h0 > 0
such that for 0<h\leq h0 the problem (3.7) has a unique solution xh : \scrG h \times [0, T ]\rightarrow \BbbR 2

and the following error bounds hold:

max
0\leq t\leq T

\bigl( 
\| x(t) - xh(t)\| 1,h + \| \.x(t) - \.xh(t)\| 0,h

\bigr) 
\leq Ch2.(3.13)

Here, and throughout, C denotes a generic positive constant independent of the
mesh parameter h.

4. Proof of Theorem 3.5. Let us abbreviate

xj(t) = x(\rho j , t), qj(t) = | \delta xj(t)| , and \tau j(t) =
1

qj(t)
\delta xj(t), j = 1, . . . , J,

where x denotes the solution of (1.4). Furthermore, we let

\widehat Th = sup
\Bigl\{ \widehat t\in [0, T ] : xh solves (3.7) on [0,\widehat t], with 1

4c0 \leq qhj (t)\leq 4C0 and

(4.1)

max
j=1,...,J

\bigl( 
| \tau j(t) - \tau hj (t)| + | \.xj(t) - \.xhj (t)| 

\bigr) 
\leq h

5
4 for 0\leq t\leq \widehat t\Bigr\} .

Here we have chosen the power h
5
4 in the definition (4.1) as a convenient value between

1 and 3
2 , where the latter power of h arises in the proof due to the application of an

inverse inequality; see (4.21) below.
Clearly, \widehat Th > 0. In view of (2.6) and Lemma 3.1 we may assume that

| \tau j + \tau j+1| \geq 1(4.2a)

and hence

| \tau hj + \tau hj+1| \geq | \tau j + \tau j+1|  - | \tau hj  - \tau j |  - | \tau hj+1  - \tau j+1| \geq 1 - 2h
5
4 \geq 1

2 ,(4.2b)

provided that 0<h\leq h\ast is sufficiently small. Thus, \theta hj (t) is well defined for j = 1, . . . , J

and t\in [0, \widehat Th). Furthermore, we have the following lemma.

Lemma 4.1. There exist 0< h0 \leq h\ast and a constant C2, which only depends on
c0,C0, and \beta , such that for all 0<h\leq h0 and 0\leq t < \widehat Th

max
j=1,...,J

\Bigl( 
| \.xhj (t)| + | \.\theta hj (t)| + | \"xhj (t)| + | \.qhj (t)| 

\Bigr) 
\leq C2.
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DISCRETE HYPERBOLIC CURVATURE FLOW IN THE PLANE 1843

Proof. To begin, we deduce from (2.6) and (4.1) that

| \.xhj (t)| \leq | xt(\rho j , t)| + | ( \.xj  - \.xhj )(t)| \leq C0 + h
5
4 \leq 2C0,

provided that 0<h\leq h0 with h0 sufficiently small. Next, a straightforward calculation
shows that \.\tau hj = 1

qhj

\bigl( 
\delta \.xhj  - (\delta \.xhj \cdot \tau hj )\tau hj

\bigr) 
, and hence, on noting (4.1), (3.1), and (2.6),

it holds that

| \.\tau hj (t)| \leq 
1

qhj (t)
| \delta \.xhj (t)| \leq 

4

c0

\bigl( 
| \delta ( \.xhj  - \.xj)(t)| + | \delta \.xj(t)| 

\bigr) 
\leq 8

c0

1

h
max

1\leq k\leq J
| ( \.xhk  - \.xk)(t)| +

4

c0
max
\rho \in I

| xt\rho (\rho , t)| \leq 
8

c0
h

1
4 +

4

c0
C0 \leq 

8C0

c0
,

provided that 0<h\leq h0 with h0 sufficiently small. From this we deduce, on recalling
(3.3) and (4.2b), that

| \.\theta hj (t)| \leq 
| \.\tau hj (t) + \.\tau hj+1(t)| 
| \tau hj (t) + \tau hj+1(t)| 

\leq 2
16C0

c0
=

32C0

c0
.

In order to bound \"xhj , we first use (3.6c), (2.6), and (4.1) to show that\bigm| \bigm| \bigm| \bigm| \bigm| \tau hj+1(t) - \tau hj (t)

h

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 
\bigm| \bigm| \bigm| \bigm| \tau j+1(t) - \tau j(t)

h

\bigm| \bigm| \bigm| \bigm| + 2

h
max

k=1,...,J
| \tau k(t) - \tau hk (t)| \leq 2C0 + 2h

1
4 \leq 3C0,

provided that 0< h\leq h0 with h0 \leq h\ast sufficiently small. If we combine this estimate
with (3.7a), (4.1), and the previously derived bounds on \.xhj and \.\theta hj , we obtain

| \"xhj (t)| \leq \beta | \.xhj (t)| +
2

qhj (t) + qhj+1(t)

\bigm| \bigm| \bigm| \bigm| \bigm| \tau hj+1(t) - \tau hj (t)

h

\bigm| \bigm| \bigm| \bigm| \bigm| + | \.xhj (t)| | \.\theta hj (t)| 

\leq 2\beta C0 +
4

c0
3C0 + 2C0

32C0

c0
= 2\beta C0 +

12C0

c0
+

64C2
0

c0
.

Finally, the bound on \.qhj is a consequence of (3.8b) and (4.1) using now in addition
the bound on \"xhj .

Let us introduce the error ej(t) := xj(t) - xhj (t). We infer from (3.11a) and (3.7a)
that

\"ej + \beta \.ej  - 
2

qhj + qhj+1

(\tau j+1  - \tau hj+1) - (\tau j  - \tau hj )

h

(4.3)

=
\bigl( 
\.xhj \cdot ( \.\theta hj  - \tau t(\rho j , \cdot )

\bigr) 
\tau (\rho j , \cdot ) + ( \.xhj \cdot \.\theta hj )

\bigl( 
\theta hj  - \tau (\rho j , \cdot )

\bigr) 
 - ( \.ej \cdot \tau t(\rho j , \cdot ))\tau (\rho j , \cdot )

+ 2
(qhj  - qj) + (qhj+1  - qj+1)

(qj + qj+1)(qhj + qhj+1)

\tau j+1  - \tau j
h

+Rj

=:

5\sum 
k=1

T k
j .

Taking the scalar product with h
2 (q

h
j +q

h
j+1) \.ej , summing over j = 1, . . . , J , and recalling

Lemma 4.1 yields
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1844 KLAUS DECKELNICK AND ROBERT N\"URNBERG

1
2h

d

dt

J\sum 
j=1

1
2 (q

h
j + qhj+1)| \.ej | 2 + \beta h

J\sum 
j=1

1
2 (q

h
j + qhj+1)| \.ej | 2(4.4)

 - h

J\sum 
j=1

(\tau j+1  - \tau hj+1) - (\tau j  - \tau hj )

h
\cdot \.ej

= 1
2h

J\sum 
j=1

1
2 ( \.q

h
j + \.qhj+1)| \.ej | 2 +

5\sum 
k=1

h

J\sum 
j=1

1
2 (q

h
j + qhj+1)T

k
j \cdot \.ej

\leq Ch

J\sum 
j=1

| \.ej | 2 + h

5\sum 
k=1

J\sum 
j=1

1
2 (q

h
j + qhj+1)T

k
j \cdot \.ej .

While the above relation already provides us with some control on \.ej , the treatment of
the elliptic part is more difficult. This is a consequence of the fact that the operator
1

| x\rho | 
\bigl( x\rho 

| x\rho | 
\bigr) 
\rho 
is degenerate in the tangential direction. It is therefore not possible to

directly control \delta ej , which we split instead as follows:

\delta ej = \delta xj  - \delta xhj = qj(\tau j  - \tau hj ) + (qj  - qhj )\tau 
h
j .(4.5)

In the next step, we will gain control on the difference of the tangents from the third
term on the left-hand side of (4.4). To do so, we essentially adapt arguments from [4,
section 5] developed for a finite element approach to the curve shortening flow. To
begin, using summation by parts, together with the fact that \delta xhj = qhj \tau 

h
j , we derive

 - h

J\sum 
j=1

(\tau j+1  - \tau hj+1) - (\tau j  - \tau hj )

h
\cdot \.ej

= h

J\sum 
j=1

(\tau j  - \tau hj ) \cdot 
\.ej  - \.ej - 1

h
= h

J\sum 
j=1

(\tau j  - \tau hj ) \cdot 
\bigl( 
\delta \.xj  - \delta \.xhj

\bigr) 
= h

J\sum 
j=1

\bigl( 
\tau hj \cdot \delta \.xhj  - \tau j \cdot \delta \.xhj

\bigr) 
+ h

J\sum 
j=1

(\tau j  - \tau hj ) \cdot \delta \.xj

= h
d

dt

J\sum 
j=1

\bigl( 
qhj  - \tau j \cdot \delta xhj

\bigr) 
+ h

J\sum 
j=1

\.\tau j \cdot \delta xhj + h

J\sum 
j=1

(\tau j  - \tau hj ) \cdot \delta \.xj

= h
d

dt

J\sum 
j=1

qhj (1 - \tau j \cdot \tau hj ) + h

J\sum 
j=1

qhj
qj

\bigl( 
\delta \.xj  - (\delta \.xj \cdot \tau j)\tau j

\bigr) 
\cdot \tau hj + h

J\sum 
j=1

(\tau j  - \tau hj ) \cdot \delta \.xj

= 1
2h

d

dt

J\sum 
j=1

qhj | \tau j  - \tau hj | 2 + h

J\sum 
j=1

\Biggl[ 
qj  - qhj
qj

\delta \.xj \cdot (\tau j  - \tau hj ) +
1
2

qhj
qj

(\delta \.xj \cdot \tau j) | \tau j  - \tau hj | 2
\Biggr] 
.

If we insert the above relation into (4.4), note that \beta \geq 0, and apply a Cauchy--Schwarz
inequality, together with Lemma 3.1 and (4.1), we obtain

1
2h

d

dt

J\sum 
j=1

\bigl( 
1
2 (q

h
j + qhj+1)| \.ej | 2 + qhj | \tau j  - \tau hj | 2

\bigr) 
(4.6)

\leq Ch

J\sum 
j=1

\bigl( 
| \.ej | 2 + (qj  - qhj )

2 + | \tau j  - \tau hj | 2
\bigr) 
+ h

5\sum 
k=1

J\sum 
j=1

1
2 (q

h
j + qhj+1)T

k
j \cdot \.ej .
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DISCRETE HYPERBOLIC CURVATURE FLOW IN THE PLANE 1845

Let us next consider the terms involving T k
j , k = 1, . . . ,5. To begin, note that (2.2)

and (3.8a) imply

\tau (\rho j , \cdot ) \cdot \.ej = \tau (\rho j , \cdot ) \cdot ( \.xj  - \.xhj ) = - \tau (\rho j , \cdot ) \cdot \.xhj = \.xhj \cdot (\theta hj  - \tau (\rho j , \cdot )).(4.7)

Therefore, the definition of T 1
j in (4.3) yields that

h

J\sum 
j=1

1
2 (q

h
j + qhj+1)T

1
j \cdot \.ej

= h

J\sum 
j=1

1
2 (q

h
j + qhj+1)

\bigl( 
\.xhj \cdot ( \.\theta hj  - \tau t(\rho j , \cdot ))

\bigr) \bigl( 
\.xhj \cdot (\theta hj  - \tau (\rho j , \cdot ))

\bigr) 
= 1

2h
d

dt

J\sum 
j=1

1
2 (q

h
j + qhj+1)

\bigl( 
\.xhj \cdot (\theta hj  - \tau (\rho j , \cdot ))

\bigr) 2
 - 1

2h

J\sum 
j=1

1
2 ( \.q

h
j + \.qhj+1)

\bigl( 
\.xhj \cdot (\theta hj  - \tau (\rho j , \cdot ))

\bigr) 2
 - h

J\sum 
j=1

1
2 (q

h
j + qhj+1)

\bigl( 
\.xhj \cdot (\theta hj  - \tau (\rho j , \cdot ))

\bigr) \bigl( 
\"xhj \cdot (\theta hj  - \tau (\rho j , \cdot ))

\bigr) 
\leq 1

2h
d

dt

J\sum 
j=1

1
2 (q

h
j + qhj+1)

\bigl( 
\tau (\rho j , \cdot ) \cdot \.ej

\bigr) 2
+Ch

J\sum 
j=1

| \theta hj  - \tau (\rho j , \cdot )| 2,

where in the last step we have used (4.7), as well as Lemma 4.1. Moreover, we have
from (3.6b) that

| \theta hj  - \tau (\rho j , \cdot )| \leq 

\bigm| \bigm| \bigm| \bigm| \bigm| \tau hj + \tau hj+1

| \tau hj + \tau hj+1| 
 - \tau j + \tau j+1

| \tau j + \tau j+1| 

\bigm| \bigm| \bigm| \bigm| \bigm| +
\bigm| \bigm| \bigm| \bigm| \tau j + \tau j+1

| \tau j + \tau j+1| 
 - \tau (\rho j , \cdot )

\bigm| \bigm| \bigm| \bigm| 
\leq 2

| \tau j + \tau j+1| 
\bigl( 
| \tau j  - \tau hj | + | \tau j+1  - \tau hj+1| 

\bigr) 
+Ch2,

so that with (4.2a)

| \theta hj  - \tau (\rho j , \cdot )| 2 \leq C(| \tau j  - \tau hj | 2 + | \tau j+1  - \tau hj+1| 2) +Ch4.(4.8)

In particular, it follows that

h

J\sum 
j=1

1
2 (q

h
j + qhj+1)T

1
j \cdot \.ej \leq 1

2h
d

dt

J\sum 
j=1

1
2 (q

h
j + qhj+1)

\bigl( 
\tau (\rho j , \cdot ) \cdot \.ej

\bigr) 2
+Ch

J\sum 
j=1

| \tau j  - \tau hj | 2 +Ch4.

(4.9)

Next, we deduce with the help of Lemma 4.1, (4.1), and (4.8) that

h

J\sum 
j=1

1
2 (q

h
j + qhj+1)T

2
j \cdot \.ej \leq Ch

J\sum 
j=1

| \theta hj  - \tau (\rho j , \cdot )| | \.ej | \leq Ch

J\sum 
j=1

\bigl( 
| \tau j  - \tau hj | 2 + | \.ej | 2

\bigr) 
+Ch4,

(4.10)

while in view of (3.12),
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1846 KLAUS DECKELNICK AND ROBERT N\"URNBERG

h

J\sum 
j=1

1
2 (q

h
j + qhj+1)(T

3
j + T 5

j ) \cdot \.ej \leq Ch

J\sum 
j=1

| \.ej | 2 +Ch4.(4.11)

Finally, with the help of (3.6c) and (2.6) we can bound

h

J\sum 
j=1

1
2 (q

h
j + qhj+1)T

4
j \cdot \.ej \leq Ch

J\sum 
j=1

\bigl( 
| qj  - qhj | + | qj+1  - qhj+1| 

\bigr) | \tau j+1  - \tau j | 
h

| \.ej | (4.12)

\leq Ch

J\sum 
j=1

\bigl( 
(qj  - qhj )

2 + | \.ej | 2
\bigr) 
+Ch4.

If we insert (4.9), (4.10), (4.11), and (4.12) into the estimate (4.6), we obtain,
upon subtracting the first term on the right-hand side of (4.9) from both sides of the
inequality and on noting | \.ej | 2  - ( \.ej \cdot \tau )2 = ( \.ej \cdot \nu )2, that

1
2h

d

dt

J\sum 
j=1

\Bigl( 
1
2 (q

h
j + qhj+1)

\bigl( 
\.ej \cdot \nu (\rho j , \cdot )

\bigr) 2
+ qhj | \tau j  - \tau hj | 2

\Bigr) 
(4.13)

\leq Ch

J\sum 
j=1

\bigl( 
| \.ej | 2 + (qj  - qhj )

2 + | \tau j  - \tau hj | 2
\bigr) 
+Ch4.

Using (4.7), (4.8), and Lemma 4.1, we have

h

J\sum 
j=1

| \.ej | 2 = h

J\sum 
j=1

\bigl( 
( \.ej \cdot \tau (\rho j , \cdot ))2 + ( \.ej \cdot \nu (\rho j , \cdot ))2

\bigr) 
(4.14)

= h

J\sum 
j=1

\bigl( 
\.xhj \cdot (\theta hj  - \tau (\rho j , \cdot ))

\bigr) 2
+ h

J\sum 
j=1

( \.ej \cdot (\nu (\rho j , \cdot ))2

\leq Ch

J\sum 
j=1

| \tau j  - \tau hj | 2 +Ch4 + h

J\sum 
j=1

( \.ej \cdot (\nu (\rho j , \cdot ))2.

If we insert (4.14) into (4.13), we find

\phi \prime h(t)\leq C3

\bigl( 
h4 + \phi h(t) +\psi h(t)

\bigr) 
,(4.15)

where we have abbreviated

\phi h(t) := h

J\sum 
j=1

\bigl( 
1
2 (q

h
j + qhj+1)

\bigl( 
\.ej \cdot \nu (\rho j , \cdot )

\bigr) 2
+ qhj | \tau j  - \tau hj | 2

\bigr) 
, \psi h(t) := h

J\sum 
j=1

(qj  - qhj )
2

(4.16)

and noted (4.1).
It remains to bound the function \psi h, which controls the second part in (4.5). To

do so, we combine (3.11b) and (3.8b) and obtain
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DISCRETE HYPERBOLIC CURVATURE FLOW IN THE PLANE 1847

\.qj  - \.qhj = - 1
4 (qj - 1 + qj)

\bigl( 
\.xj - 1 \cdot \"xj - 1  - \.xhj - 1 \cdot \"xhj - 1

\bigr) 
 - 1

4 (qj + qj+1)
\bigl( 
\.xj \cdot \"xj  - \.xhj \cdot \"xhj

\bigr) (4.17)

+ 1
4

\bigl( 
(qhj - 1  - qj - 1) + (qhj  - qj)

\bigr) 
\.xhj - 1 \cdot \"xhj - 1 +

1
4

\bigl( 
(qhj  - qj) + (qhj+1  - qj+1)

\bigr) 
\.xhj \cdot \"xhj

 - 1
4\beta (qj - 1 + qj)

\bigl( 
| \.xj - 1| 2  - | \.xhj - 1| 2

\bigr) 
 - 1

4\beta (qj + qj+1)
\bigl( 
| \.xj | 2  - | \.xhj | 2

\bigr) 
+ 1

4\beta 
\bigl( 
(qhj - 1  - qj - 1) + (qhj  - qj)

\bigr) 
| \.xhj - 1| 2 + 1

4\beta 
\bigl( 
(qhj  - qj) + (qhj+1  - qj+1)

\bigr) 
| \.xhj | 2 + \~Rj

= - 1
8\partial t

\Bigl( 
(qj - 1 + qj)

\bigl( 
| \.xj - 1| 2  - | \.xhj - 1| 2

\bigr) \Bigr) 
 - 1

8\partial t

\Bigl( 
(qj + qj+1)

\bigl( 
| \.xj | 2  - | \.xhj | 2

\Bigr) 
+ 1

8

\bigl( 
\.qj - 1 + \.qj

\bigr) \bigl( 
| \.xj - 1| 2  - | \.xhj - 1| 2

\bigr) 
+ 1

8

\bigl( 
\.qj + \.qj+1

\bigr) \bigl( 
| \.xj | 2  - | \.xhj | 2

\bigr) 
+ 1

4

\bigl( 
(qhj - 1  - qj - 1) + (qhj  - qj)

\bigr) 
\.xhj - 1 \cdot \"xhj - 1 +

1
4

\bigl( 
(qhj  - qj) + (qhj+1  - qj+1)

\bigr) 
\.xhj \cdot \"xhj

 - 1
4\beta (qj - 1 + qj)

\bigl( 
| \.xj - 1| 2  - | \.xhj - 1| 2

\bigr) 
 - 1

4\beta (qj + qj+1)
\bigl( 
| \.xj | 2  - | \.xhj | 2

\bigr) 
+ 1

4\beta 
\bigl( 
(qhj - 1  - qj - 1) + (qhj  - qj)

\bigr) 
| \.xhj - 1| 2 + 1

4\beta 
\bigl( 
(qhj  - qj) + (qhj+1  - qj+1)

\bigr) 
| \.xhj | 2 + \~Rj .

Recalling (1.4b) and (3.7b), we infer that qhj (0) = qj(0) as well as

| \.ej(0)| = | \.xj(0) - \.xhj (0)| =

\bigm| \bigm| \bigm| \bigm| \bigm| \scrV 0(\rho j)

\biggl( 
\tau (\rho j ,0) - 

\tau j(0) + \tau j+1(0)

| \tau j(0) + \tau j+1(0)| 

\biggr) \bot 
\bigm| \bigm| \bigm| \bigm| \bigm| \leq Ch2,(4.18)

where we also made use of (3.6b). Thus, we obtain after integrating (4.17) in time,
on noting that | | a| 2  - | b| 2| \leq (| a| + | b| )| a - b| and on taking into account Lemma 4.1
and (3.12), that

| qj(t) - qhj (t)| 

\leq C
\bigl( 
| \.ej - 1(t)| + | \.ej(t)| 

\bigr) 
+C

\int t

0

| \.ej - 1(u)| + | \.ej(u)| du

+C

\int t

0

| (qj - 1  - qhj - 1)(u)| + | (qj  - qhj )(u)| + | (qj+1  - qhj+1)(u)| du+Ch2

\leq C
\bigl( 
| \.ej - 1(t)| + | \.ej(t)| 

\bigr) 
+C

\biggl( \int t

0

| \.ej - 1(u)| 2 + | \.ej(u)| 2 du
\biggr) 1

2

+C
\Bigl( \int t

0

| (qj - 1  - qhj - 1)(u)| 2 + | (qj  - qhj )(u)| 2 + | (qj+1  - qhj+1)(u)| 2 du
\Bigr) 1

2

+Ch2.

Taking the square and summing over j yields

h

J\sum 
j=1

(qj  - qhj )
2(t)

\leq Ch

J\sum 
j=1

| \.ej(t)| 2 +C

\int t

0

h

J\sum 
j=1

| \.ej(u)| 2 du+Ch

\int t

0

(qj  - qhj )
2(u) du+Ch4,

which together with (4.14) and (4.1) implies

\psi h(t)\leq C4

\biggl( 
\phi h(t) +

\int t

0

\bigl( 
\phi h(u) +\psi h(u)

\bigr) 
du+ h4

\biggr) 
.(4.19)

If we multiply (4.15) by 2C4, integrate with respect to time, and combine the result
with (4.19), we obtain, on noting from (4.18) that \phi h(0)\leq C5h

4, that

C4\phi h(t) +\psi h(t)\leq (2C4(C3 +C5) +C4)

\biggl( 
h4 +

\int t

0

\phi h(u) +\psi h(u) du

\biggr) 
,
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1848 KLAUS DECKELNICK AND ROBERT N\"URNBERG

from which we deduce with the help of Gronwall's lemma that

\phi h(t) +\psi h(t)\leq Ch4, 0\leq t < \widehat Th.(4.20)

In particular, we have for j = 1, . . . , J and 0\leq t < \widehat Th that

| (\tau j  - \tau hj )(t)| \leq h - 
1
2

\Biggl( 
h

J\sum 
k=1

| (\tau k  - \tau hk )(t)| 

\Biggr) 1
2

\leq Ch - 
1
2

\sqrt{} 
\phi h(t)\leq Ch

3
2 \leq 1

2h
5
4 ,(4.21)

provided that 0 < h \leq h0 and h0 is chosen smaller if necessary. In a similar way, on
combining (4.20), (4.16), (4.14), (3.5), and (2.6), we obtain that

| ( \.xj  - \.xhj )(t)| \leq 1
2h

5
4 , 1

3c0 \leq qhj (t)\leq 3C0, j = 1, . . . , J, 0\leq t < \widehat Th.
If \widehat Th <T , one could therefore continue the discrete solution to an interval [0, \widehat Th + \varepsilon ],
for some \varepsilon > 0, such that 1

4c0 \leq qhj (t)\leq 4C0, | \tau j(t) - \tau hj (t)| + | \.xj(t) - \.xhj (t)| \leq h
5
4 for

all j = 1, . . . , J , and 0\leq t\leq \widehat Th + \varepsilon , contradicting the definition of \widehat Th. Thus, \widehat Th = T .
Finally, the bounds (3.13) follow from (4.20), the definitions of \phi h and \psi h, (4.14), and
(4.5).

5. Numerical results.

5.1. Fully discrete scheme. For the numerical simulations presented in this
section, we consider the following fully discrete approximation of (3.7), where in order
to discretize in time, we let tm = m\Delta t, m = 0, . . . ,M , with the uniform time step
\Delta t = T

M > 0. We will approximate xh(tm) by the grid function xm : \scrG h \rightarrow \BbbR 2.
Analogously to (3.3), we define \theta mj , j = 1, . . . , J , in terms of xm, and similarly for qmj
and \tau mj . Then, given suitable initial data x0, x - 1 : \scrG h \rightarrow \BbbR 2, for m= 0, . . . ,M  - 1 we

find xm+1 : \scrG h \rightarrow \BbbR 2 such that, for j = 1, . . . , J ,

1
2 (q

m
j + qmj+1)h

xm+1
j  - 2xmj + xm - 1

j

(\Delta t)2
+ 1

4\beta (q
m
j + qmj+1)h

xm+1
j  - xm - 1

j

\Delta t
(5.1)

=
1

2qmj+1

\delta xm+1
j+1  - 1

2qmj
\delta xm+1

j +
1

2qmj+1

\delta xm - 1
j+1  - 1

2qmj
\delta xm - 1

j

 - 1
2 (q

m
j + qmj+1)h

\Biggl( 
xmj  - xm - 1

j

\Delta t
\cdot 
\theta mj  - \theta m - 1

j

\Delta t

\Biggr) 
\theta mj .

Observe that we have chosen a linear discretization that is analogous to a mass-lumped
finite element approximation of (1.4a), which uses a semi-implicit approximation of
1

| x\rho | 
\bigl( x\rho 

| x\rho | 
\bigr) 
\rho 
in the spirit of the discretizations proposed for the linear wave equation in,

e.g., [10, section 2.7]. We remark that in contrast to the semidiscrete setting (recall
(3.8a)), it does not appear possible to prove a fully discrete analogue of the crucial
normal flow property (2.2) for the fully discrete scheme (5.1).

In order to derive suitable initial data for (5.1), we observe that the solution to
(1.4) satisfies the Taylor expansion

x(\cdot ,\Delta t) = x+\Delta txt +
1
2 (\Delta t)

2xtt +\scrO ((\Delta t)3)

(5.2)

= x+\Delta t\scrV 0\nu +
1
2 (\Delta t)

2

\biggl[ 
1

| x\rho | 

\biggl( 
x\rho 
| x\rho | 

\biggr) 
\rho 

 - (\scrV 0\nu \cdot \tau t)\tau  - \beta \scrV 0\nu 

\biggr] 
+\scrO ((\Delta t)3)

= x+\Delta t\scrV 0\nu +
1
2 (\Delta t)

2

\Biggl[ 
1

| x\rho | 

\biggl( 
x\rho 
| x\rho | 

\biggr) 
\rho 

 - 1

| x\rho | 
\scrV 0\scrV 0,\rho \tau  - \beta \scrV 0\nu 

\Biggr] 
+\scrO ((\Delta t)3),
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DISCRETE HYPERBOLIC CURVATURE FLOW IN THE PLANE 1849

where on the right-hand side we always evaluate x, \tau , \nu , \scrV 0 and their derivatives at
(\cdot ,0). Note in particular that in the last step we used that

\tau t \cdot \nu =
xt,\rho 
| x\rho | 

\cdot \nu = 1

| x\rho | 
(\scrV 0\nu )\rho \cdot \nu =

1

| x\rho | 
\scrV 0,\rho .

Inspired by (5.2), we choose as initial data

x0j = x0(\rho j) and

x - 1
j = x0j  - \Delta t\scrV 0(\rho j)\theta 

0,\bot 
j

+ 1
2 (\Delta t)

2

\Biggl[ 
2

q0j + q0j+1

\Biggl( 
1

h

\Biggl( 
\delta x0j+1

q0j+1

 - 
\delta x0j
q0j

\Biggr) 
 - \scrV 0(\rho j)\scrV 0,\rho (\rho j)\theta 

0
j

\Biggr) 
 - \beta V0\theta 

0,\bot 
j

\Biggr] 
for j = 1, . . . , J .

We stress that all our presented numerical experiments fall within the scope of our
main result, Theorem 3.5. However, for nonconvex initial data, and for convex initial
data with an initial normal velocity \scrV 0 such that maxI \scrV 0 > 0, a rigorous existence
and regularity theory for the underlying PDE appears to be still lacking.

5.2. Convergence experiment. Our first set of numerical experiments is for
the evolution of an initially circular curve when \beta = 0. It can be shown that a family
of circles with radius r(t) is a solution to (1.2) with \scrV \Gamma | t=0= V0 \in \BbbR for the initial
outer normal velocity if

\"r(t) = - 1

r(t)
in (0, T ], r(0) = r0, \.r(0) = V0.

Upon integration we obtain that

1
2 ( \.r(t))

2 = ln r0  - ln r(t) + 1
2V

2
0 = ln

r0
r(t)

+ 1
2V

2
0 .

Hence,

\.r(t) =\pm 
\sqrt{} 

2 ln
r0
r(t)

+ V 2
0 ,

which means that if V0 > 0, then r(t) will at first increase until it hits a maximum,
where 2 ln r0

r(t) + V 2
0 = 0, after which it will decrease and shrink to a point in finite

time. On the other hand, if V0 \leq 0, then the circle will monotonically shrink to a
point.

For the special case V0 = 0, and on recalling the Gauss error function

erf(z) = 2\surd 
\pi 

\int z

0

e - u2

du, erf\prime (z) = 2\surd 
\pi 
e - z2

,

we find that r(t) is the solution of

t - 
\sqrt{} 

\pi 
2 r0erf

\biggl( \sqrt{} 
ln

r0
r(t)

\biggr) 
= 0,

which means that

r(t) = r0 exp

\biggl( 
 - 
\biggl[ 
erf - 1

\biggl( \sqrt{} 
2
\pi 

t

r0

\biggr) \biggr] 2\biggr) 
.(5.3)
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1850 KLAUS DECKELNICK AND ROBERT N\"URNBERG

Table 1
Errors for the convergence test for (5.4), (5.3) with r0 = 1 over the time interval [0,1] for the

scheme (5.1). We also display the experimental orders of convergence (EOC).

J maxm=0,...,M \| x(tm) - xm\| 1,h EOC maxm=1,...,M - 1 \| \.x(tm) - xm+1 - xm - 1

2\Delta t
\| 0,h EOC

32 3.9796e-03 --- 9.5331e-04 ---
64 1.0059e-03 1.98 2.4960e-04 1.93

128 2.5256e-04 1.99 6.3995e-05 1.96

256 6.3254e-05 2.00 1.6211e-05 1.98
512 1.5827e-05 2.00 4.0803e-06 1.99

1024 3.9582e-06 2.00 1.0236e-06 2.00

2048 9.8980e-07 2.00 2.5634e-07 2.00

For the true solution

x(\rho , t) = r(t)

\biggl( 
cosg(2\pi \rho )
sing(2\pi \rho )

\biggr) 
, g(u) = u+ 0.1 sin(u)(5.4)

of (1.4), we compute approximations to the errors between x and xh, the solution to
(3.7) with \scrV 0 = 0, for the choice r0 = 1 on the time interval [0,1] with the help of the
fully discrete scheme (5.1). In particular, for the sequence of discretization parameters
h = 1

J = 2 - k, k = 5, . . . ,11, we let \Delta t = h and compare the grid interpolations of x
and \.x to their fully discrete analogues in the discrete norms (3.2). These errors are
reported in Table 1, where we observe the expected second order convergence rates
from Theorem 3.5.

5.3. Numerical experiments with constant initial velocity. Throughout
the remainder of the numerical results section we choose the discretization parameters
J = 256 and \Delta t= 10 - 4. Moreover, we always let \beta = 0, unless stated otherwise. The
curve evolutions we visualize by plotting the polygonal curves \Gamma m \subset \BbbR 2 defined by
the vertices \{ xmj \} Jj=1, and at times we also show the evolution of the length of these
curves, defined by

| \Gamma m| = h

J\sum 
j=1

qmj =

J\sum 
j=1

| xmj  - xmj - 1| .

Moreover, we will often be interested in a possible blow-up in curvature, and so we
will monitor the quantity

Km
\infty = max

j=1,...,J

| \delta \tau mj | 
qmj

as an approximation to the maximal value of | \varkappa | = | \tau \rho | 
| x\rho | ; recall (1.3).

In all the numerical computations in this subsection, we will choose a constant
initial velocity \scrV 0(\rho ) = V0.

As discussed above, for an initial circle with uniform initial normal velocity \scrV 0 =
V0, depending on the sign of V0 \in \BbbR the family of circles either expands at first and
then shrinks, or it shrinks immediately. We visualize these different behaviors in
Figure 1. In each case, we observe a smooth solution until the circles shrink to a
point, meaning that | \Gamma m| and 1/Km

\infty approach zero at the same time.
For the next computations, we choose as initial curve a mild ellipse, with a major

axis of length 3 and a minor axis of length 2. The results for V0 = 0 are shown
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Figure 1: Hyperbolic curvature flow starting from a unit circle. Above we show the evolution
of |Γm| over time for V0 = 0, V0 = 1 and V0 = −1 (from left to right). The final times for
these computations are T = 1.25, T = 3.45 and T = 0.65, respectively. Below we show the
corresponding evolutions of 1/Km

∞ over time.

discontinuous. We stress that the observed singularities in our numerical simulations are robust
with respect to the choice of discretization parameters. For example, refining the discretization
parameters to J = 512 and ∆t = 5 × 10−5 gave visually indistuingishable results compared to
Figure 3.
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Figure 2: Hyperbolic curvature flow, with V0 = 0, starting from an ellipse. On the left we show
Γm at times t = 0, 0.1, . . . , 1.4, T = 1.47. We also show the evolutions of |Γm| (middle) and
1/Km

∞ (right) over time.

We are interested in the effect of the parameter β on these developing singularities, and would
expect some damping or smoothing to be observable for β > 0. Repeating the simulation from
Figure 2 with β = 2 yields the results in Figure 4, where we observe that the blow-up in curvature
now happens much later, when the curve itself is almost extinct. We also see a marked change
in the profile of the evolving curve. While in Figure 2 at late times the curve resembles an
ellipsoid aligned with the x2-axis, the evolution in Figure 4 for long times appears to approach
a circle, until towards the very end it starts to resemble an ellipsoid aligned with the x1-axis.
In addition, a repeat of Figure 3 now with β = 0.1 is shown in Figure 5, where once again we
note that visually the curve appears smoother for longer, until eventually the curvature blows
up due to facetting on the left and right sides of the curve.
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discontinuous. We stress that the observed singularities in our numerical simulations are robust
with respect to the choice of discretization parameters. For example, refining the discretization
parameters to J = 512 and ∆t = 5 × 10−5 gave visually indistuingishable results compared to
Figure 3.

-1

-0.5

 0

 0.5

 1

-1.5 -1 -0.5  0  0.5  1  1.5

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

Figure 2: Hyperbolic curvature flow, with V0 = 0, starting from an ellipse. On the left we show
Γm at times t = 0, 0.1, . . . , 1.4, T = 1.47. We also show the evolutions of |Γm| (middle) and
1/Km

∞ (right) over time.

We are interested in the effect of the parameter β on these developing singularities, and would
expect some damping or smoothing to be observable for β > 0. Repeating the simulation from
Figure 2 with β = 2 yields the results in Figure 4, where we observe that the blow-up in curvature
now happens much later, when the curve itself is almost extinct. We also see a marked change
in the profile of the evolving curve. While in Figure 2 at late times the curve resembles an
ellipsoid aligned with the x2-axis, the evolution in Figure 4 for long times appears to approach
a circle, until towards the very end it starts to resemble an ellipsoid aligned with the x1-axis.
In addition, a repeat of Figure 3 now with β = 0.1 is shown in Figure 5, where once again we
note that visually the curve appears smoother for longer, until eventually the curvature blows
up due to facetting on the left and right sides of the curve.
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Fig. 2. Hyperbolic curvature flow, with V0 = 0, starting from an ellipse. On the left we show
\Gamma m at times t = 0,0.1, . . . ,1.4, T = 1.47. We also show the evolutions of | \Gamma m| (middle) and 1/Km

\infty 
(right) over time.

in Figure 2, where we note the onset of a singularity in finite time. In particular,
the curve appears to form two kinks, leading to a blow-up in curvature. When we
choose the initial normal velocity as V0 = 1, we obtain the results shown in Figure 3.
Once again we observe a blow-up in curvature, although this time the curve does not
exhibit two kinks. Instead it seems to approach a shape with four corners. We note
that the initial ellipse at first grows towards a circle. It then shrinks while momentarily
adopting an elliptic shape but with the major and minor axes swapped with respect
to the initial data. Towards the end of the evolution a more circular shape appears
again, which then evolves to the limiting shape with the four corners, i.e., with four
points where the curvature is discontinuous. We stress that the observed singularities
in our numerical simulations are robust with respect to the choice of discretization
parameters. For example, refining the discretization parameters to J = 512 and
\Delta t= 5\times 10 - 5 gave visually indistinguishable results compared to Figure 3.

We are interested in the effect of the parameter \beta on these developing singularities
and would expect some damping or smoothing to be observable for \beta > 0. Repeating
the simulation from Figure 2 with \beta = 2 yields the results in Figure 4, where we
observe that the blow-up in curvature now happens much later, when the curve itself

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Figure 3: Hyperbolic curvature flow, with V0 = 1, starting from an ellipse. On the left we show
Γm at times t = 0, 0.3, . . . , T = 4.2. We also show the evolutions of |Γm| (middle) and 1/Km

∞
(right) over time.

Finally, we also consider some numerical experiments where the initial data is nonconvex. For
the simulation in Figure 6 we start from a smooth dumbbell-like initial curve. We observe that
the curve starts to shrink until it eventually exhibits two facets on the left and right, which leads
to a blow-up in the curvature. Repeating the simulation for the constant initial velocity V0 = 1
yields the results in Figure 7. Now the curve first expands vertically into a convex curve that
expands further, until it narrows on the x1-axis towards the origin to create a new nonconvex
shape that resembles a variant of the initial data that is now aligned with the x2-axis. At this
stage the curve begins again to expand into a convex shape that then shrinks until two developing
kinks at the top and bottom of the curve lead to a blow-up in curvature. Interestingly, when we
use the initial velocity V0 = −1 the curve soon self-intersects, see Figure 8, which is something
the parametric formulation is blind towards. Similarly to the evolution in Figure 6, the solution
approaches a blow-up in curvature when two facets are about to be created on the left and right
sides of the curve.

In conclusion we remark that the onset of a blow-up in curvature in finite time for strictly
convex initial data as observed in Figure 2 confirms the theoretical predictions in [15]. In
addition, Figure 3 demonstrates that the same can be observed for an outward initial velocity
V0ν(·, 0). Finally, from our remaining numerical simulations we conjecture that also nonconvex
initial data can exhibit the same phenomenon.

5.4 Numerical experiments with nonconstant initial velocity

In this final subsection we report on a numerical simulation with a nonconstant initial velocity
V0. In particular, we repeat the experiment from Figure 3, but now choose V0(ρ) = sin(2πρ),
with x0(ρ) = (32 cos(2πρ), sin(2πρ))

T . The evolution can be seen in Figure 9. Note that due
to the given initial velocity, the curve rises and shrinks at the same time. Towards the end
of the evolution a flat patch appears to develop at the bottom part of the curve. For a later

19

Fig. 3. Hyperbolic curvature flow, with V0 = 1, starting from an ellipse. On the left we show
\Gamma m at times t= 0,0.3, . . . , T = 4.2. We also show the evolutions of | \Gamma m| (middle) and 1/Km

\infty (right)
over time.
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Figure 4: Damped hyperbolic curvature flow, with β = 2 and V0 = 0, starting from an ellipse.
On the top we show Γm at times t = 0, 0.2, . . . , 2.4, T = 2.4423, as well as Γm separately at
times t = 2.44 and t = T . Below we show the evolutions of |Γm| (left) and 1/Km

∞ (right) over
time.

comparison, we also provide a plot of the discrete tangential velocity

‖Dtx
m+1 · θm‖0,h :=


h

J∑

j=1

∣∣∣∣∣
xm+1
j − xmj

∆t
· θmj

∣∣∣∣∣

2



1
2

.

over time in Figure 9. Since (5.1) is a discrete approximation of the normal flow (1.4), the
quantity stays nearly equal to zero throughout the evolution.

We mentioned in the introduction that a question of mathematical interest is whether solutions to
(1.5) parameterize curves evolving according to (1.2). We now provide some numerical evidence
that this is not the case. In order to numerically approximate solutions to (1.5), we naturally
adapt the scheme (5.1), for β = 0, by omitting the last term on the right hand side of (5.1). For
this new scheme we then repeat the computation from Figure 9 using exactly the same discrete
initial data. The ensuing evolution, shown in Figure 10, is close to what we observed before,
but ultimately differs. The differences are most pronounced in the final shape of Γm and in
the plot of 1/Km

∞ over time. We remark that a main difference between (1.4) and (1.5) is that
the former is a normal flow, while the latter allows for a nonzero tangential component of the
velocity xt. Once again this is confirmed by our numerical experiment, as can be seen from the
plot of ‖Dtx

m+1 · θm‖0,h in Figure 10, which seems to be monotonically increasing. We remark
that we repeated the simulations in Figures 9 and 10 with finer discretization parameters and
obtained visually indistinguishable results. Hence we are confident that the displayed evolution
provide numerical evidence that the two PDEs (1.4a) and (1.5), with the initial conditions (1.4b),
parameterize different curve evolutions.

20

Fig. 4. Damped hyperbolic curvature flow, with \beta = 2 and V0 = 0, starting from an ellipse. On
the top we show \Gamma m at times t= 0,0.2, . . . ,2.4, T = 2.4423, as well as \Gamma m separately at times t= 2.44
and t= T . Below we show the evolutions of | \Gamma m| (left) and 1/Km

\infty (right) over time.

is almost extinct. We also see a marked change in the profile of the evolving curve.
While in Figure 2 at late times the curve resembles an ellipsoid aligned with the
x2-axis, the evolution in Figure 4 for long times appears to approach a circle, until
towards the very end it starts to resemble an ellipsoid aligned with the x1-axis. In
addition, a repeat of Figure 3 now with \beta = 0.1 is shown in Figure 5, where once
again we note that visually the curve appears smoother for longer, until eventually
the curvature blows up due to faceting on the left and right sides of the curve.

Finally, we also consider some numerical experiments where the initial data is
nonconvex. For the simulation in Figure 6, we start from a smooth dumbbell-like
initial curve. We observe that the curve starts to shrink until it eventually exhibits
two facets on the left and right, which leads to a blow-up in the curvature. Repeating
the simulation for the constant initial velocity V0 = 1 yields the results in Figure 7.
Now the curve first expands vertically into a convex curve that expands further,
until it narrows on the x1-axis towards the origin to create a new nonconvex shape
that resembles a variant of the initial data that is now aligned with the x2-axis.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Figure 5: Damped hyperbolic curvature flow, with β = 0.1 and V0 = 1, starting from an ellipse.
On the left we show Γm at times t = 0, 0.3, . . . , 3.9, T = 4.1. We also show the evolutions of
|Γm| (middle) and 1/Km

∞ (right) over time.
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Figure 6: Hyperbolic curvature flow, with V0 = 0, starting from a smooth dumbbell. On top we
show Γm at times t = 0, 0.05, . . . , 0.2, T = 0.23. Below we show the evolutions of |Γm| (left) and
1/Km

∞ (right) over time.
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At this stage the curve begins again to expand into a convex shape that then shrinks
until two developing kinks at the top and bottom of the curve lead to a blow-up in
curvature. Interestingly, when we use the initial velocity V0 =  - 1 the curve soon
self-intersects (see Figure 8), which is something the parametric formulation is blind
towards. Similarly to the evolution in Figure 6, the solution approaches a blow-up in
curvature when two facets are about to be created on the left and right sides of the
curve.

In conclusion, we remark that the onset of a blow-up in curvature in finite time for
strictly convex initial data as observed in Figure 2 confirms the theoretical predictions
in [15]. In addition, Figure 3 demonstrates that the same can be observed for an
outward initial velocity \scrV 0\nu (\cdot ,0). Finally, from our remaining numerical simulations
we conjecture that also nonconvex initial data can exhibit the same phenomenon.
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Fig. 7. Hyperbolic curvature flow, with V0 = 1, starting from a smooth dumbbell. On top we
show \Gamma m at times t = 0,0.1, . . . , T = 1.2 (left), as well as evolutions of | \Gamma m| (middle) and 1/Km

\infty 
(right) over time. Below we visualize \Gamma m separately at times t= 0,0.2,0.4,0.6 and 0.8,1,1.1,1.2.
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we show Γm at times t = 0, 0.03, . . . , 0.09, T = 0.095. Below we show the evolutions of |Γm|
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∞ (right) over time.
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We also show the evolutions of ‖Dtx

m+1 · θm‖0,h (middle) and 1/Km
∞ (right) over time.
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Fig. 9. Hyperbolic curvature flow, with \scrV 0(\rho ) = sin(2\pi \rho ), starting from an ellipse parameterized
by x0(\rho ) = ( 3
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cos(2\pi \rho ), sin(2\pi \rho ))T . On the left we show \Gamma m at times t= 0,0.2, . . . , T = 1.2. We also

show the evolutions of \| Dtxm+1 \cdot \theta m\| 0,h (middle) and 1/Km
\infty (right) over time.
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T . On the left we show Γm at times t = 0, 0.2, . . . , T = 1.2. We
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m+1 · θm‖0,h (middle) and 1/Km
∞ (right) over time.
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Fig. 10. The flow (1.5) with (1.4b) for \scrV 0(\rho ) = sin(2\pi \rho ), starting from an ellipse parameterized
by x0(\rho ) = ( 3

2
cos(2\pi \rho ), sin(2\pi \rho ))T . On the left we show \Gamma m at times t= 0,0.2, . . . , T = 1.2. We also

show the evolutions of \| Dtxm+1 \cdot \theta m\| 0,h (middle) and 1/Km
\infty (right) over time.

5.4. Numerical experiments with nonconstant initial velocity. In this
final subsection, we report on a numerical simulation with a nonconstant initial ve-
locity \scrV 0. In particular, we repeat the experiment from Figure 3, but now choose
\scrV 0(\rho ) = sin(2\pi \rho ), with x0(\rho ) = ( 32 cos(2\pi \rho ), sin(2\pi \rho ))

T . The evolution can be seen in
Figure 9. Note that due to the given initial velocity, the curve rises and shrinks at
the same time. Towards the end of the evolution a flat patch appears to develop at
the bottom part of the curve. For a later comparison, we also provide a plot of the
discrete tangential velocity

\| Dtx
m+1 \cdot \theta m\| 0,h :=

\left(  h J\sum 
j=1

\bigm| \bigm| \bigm| \bigm| \bigm| x
m+1
j  - xmj

\Delta t
\cdot \theta mj

\bigm| \bigm| \bigm| \bigm| \bigm| 
2
\right)  1

2

over time in Figure 9. Since (5.1) is a discrete approximation of the normal flow (1.4),
the quantity stays nearly equal to zero throughout the evolution.

We mentioned in the introduction that a question of mathematical interest is
whether solutions to (1.5) parameterize curves evolving according to (1.2). We now
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provide some numerical evidence that this is not the case. In order to numerically
approximate solutions to (1.5), we naturally adapt the scheme (5.1), for \beta = 0, by
omitting the last term on the right-hand side of (5.1). For this new scheme, we then
repeat the computation from Figure 9 using exactly the same discrete initial data.
The ensuing evolution, shown in Figure 10, is close to what we observed before but
ultimately differs. The differences are most pronounced in the final shape of \Gamma m and
in the plot of 1/Km

\infty over time. We remark that a main difference between (1.4) and
(1.5) is that the former is a normal flow, while the latter allows for a nonzero tan-
gential component of the velocity xt. Once again this is confirmed by our numerical
experiment, as can be seen from the plot of \| Dtx

m+1 \cdot \theta m\| 0,h in Figure 10, which
seems to be monotonically increasing. We remark that we repeated the simulations
in Figures 9 and 10 with finer discretization parameters and obtained visually indis-
tinguishable results. Hence, we are confident that the displayed evolution provides
numerical evidence that the two PDEs (1.4a) and (1.5), with the initial conditions
(1.4b), parameterize different curve evolutions.
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