Legged robots can outperform wheeled machines for most navigation tasks across unknown and rough terrains. For such tasks, visual feedback is a fundamental asset to provide robots with terrain awareness. However, robust dynamic locomotion on difficult terrains with real-time performance guarantees remains a challenge. We present here a real-time, dynamic foothold adaptation strategy based on visual feedback. Our method adjusts the landing position of the feet in a fully reactive manner, using only on-board computers and sensors. The correction is computed and executed continuously along the swing phase trajectory of each leg. To efficiently adapt the landing position, we implement a self-supervised foothold classifier based on a convolutional neural network. Our method results in an up to 200 times faster computation with respect to the full-blown heuristics. Our goal is to react to visual stimuli from the environment, bridging the gap between blind reactive locomotion and purely visio...

Legged robots can outperform wheeled machines for most navigation tasks across unknown and rough terrains. For such tasks, visual feedback is a fundamental asset to provide robots with terrain awareness. However, robust dynamic locomotion on difficult terrains with real-time performance guarantees remains a challenge. We present here a real-time, dynamic foothold adaptation strategy based on visual feedback. Our method adjusts the landing position of the feet in a fully reactive manner, using only on-board computers and sensors. The correction is computed and executed continuously along the swing phase trajectory of each leg. To efficiently adapt the landing position, we implement a self-supervised foothold classifier based on a convolutional neural network. Our method results in an up to 200 times faster computation with respect to the full-blown heuristics. Our goal is to react to visual stimuli from the environment, bridging the gap between blind reactive locomotion and purely vision-based planning strategies. We assess the performance of our method on the dynamic quadruped robot HyQ, executing static and dynamic gaits (at speeds up to 0.5 m/s) in both simulated and real scenarios; the benefit of safe foothold adaptation is clearly demonstrated by the overall robot behavior.

Fast and Continuous Foothold Adaptation for Dynamic Locomotion Through CNNs / Magana, Oav; Barasuol, V; Camurri, M; Franceschi, L; Focchi, M; Pontil, M; Caldwell, Dg; Semini, C. - In: IEEE ROBOTICS AND AUTOMATION LETTERS. - ISSN 2377-3766. - 4:2(2019), pp. 2140-2147. [10.1109/LRA.2019.2899434]

Fast and Continuous Foothold Adaptation for Dynamic Locomotion Through CNNs

Camurri M;Focchi M;
2019-01-01

Abstract

Legged robots can outperform wheeled machines for most navigation tasks across unknown and rough terrains. For such tasks, visual feedback is a fundamental asset to provide robots with terrain awareness. However, robust dynamic locomotion on difficult terrains with real-time performance guarantees remains a challenge. We present here a real-time, dynamic foothold adaptation strategy based on visual feedback. Our method adjusts the landing position of the feet in a fully reactive manner, using only on-board computers and sensors. The correction is computed and executed continuously along the swing phase trajectory of each leg. To efficiently adapt the landing position, we implement a self-supervised foothold classifier based on a convolutional neural network. Our method results in an up to 200 times faster computation with respect to the full-blown heuristics. Our goal is to react to visual stimuli from the environment, bridging the gap between blind reactive locomotion and purely visio...
2019
2
Magana, Oav; Barasuol, V; Camurri, M; Franceschi, L; Focchi, M; Pontil, M; Caldwell, Dg; Semini, C
Fast and Continuous Foothold Adaptation for Dynamic Locomotion Through CNNs / Magana, Oav; Barasuol, V; Camurri, M; Franceschi, L; Focchi, M; Pontil, M; Caldwell, Dg; Semini, C. - In: IEEE ROBOTICS AND AUTOMATION LETTERS. - ISSN 2377-3766. - 4:2(2019), pp. 2140-2147. [10.1109/LRA.2019.2899434]
File in questo prodotto:
File Dimensione Formato  
villarreal19ral.pdf

accesso aperto

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 5.76 MB
Formato Adobe PDF
5.76 MB Adobe PDF Visualizza/Apri
Fast_and_Continuous_Foothold_Adaptation_for_Dynamic_Locomotion_Through_CNNs.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.49 MB
Formato Adobe PDF
3.49 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/365148
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 68
  • ???jsp.display-item.citation.isi??? 58
  • OpenAlex ND
social impact