In this note we study the singular vanishing-viscosity limit of a gradient flow set in a finite-dimensional Hilbert space and driven by a smooth, but possibly nonconvex, time-dependent energy functional. We resort to ideas and techniques from the variational approach to gradient flows and rate-independent evolution to show that, under suitable assumptions, the solutions to the singularly perturbed problem converge to a curve of stationary points of the energy, whose behavior at jump points is characterized in terms of the notion of Dissipative Viscosity solution. We also provide sufficient conditions under which Dissipative Viscosity solutions enjoy better properties, which turn them into Balanced Viscosity solutions. Finally, we discuss the generic character of our assumptions. © 2017 Elsevier Inc. All rights reserved.
Singular vanishing-viscosity limits of gradient flows: The finite-dimensional case / Agostiniani, Virginia; Rossi, Riccarda. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 263:11(2017), pp. 7815-7855. [10.1016/j.jde.2017.08.027]
Singular vanishing-viscosity limits of gradient flows: The finite-dimensional case
Agostiniani, Virginia;
2017-01-01
Abstract
In this note we study the singular vanishing-viscosity limit of a gradient flow set in a finite-dimensional Hilbert space and driven by a smooth, but possibly nonconvex, time-dependent energy functional. We resort to ideas and techniques from the variational approach to gradient flows and rate-independent evolution to show that, under suitable assumptions, the solutions to the singularly perturbed problem converge to a curve of stationary points of the energy, whose behavior at jump points is characterized in terms of the notion of Dissipative Viscosity solution. We also provide sufficient conditions under which Dissipative Viscosity solutions enjoy better properties, which turn them into Balanced Viscosity solutions. Finally, we discuss the generic character of our assumptions. © 2017 Elsevier Inc. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
Agostiniani_Rossi_2017.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
648.8 kB
Formato
Adobe PDF
|
648.8 kB | Adobe PDF | Visualizza/Apri |
1611.08105.pdf
accesso aperto
Tipologia:
Pre-print non referato (Non-refereed preprint)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
451.17 kB
Formato
Adobe PDF
|
451.17 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione