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SINGULAR VANISHING-VISCOSITY LIMITS OF GRADIENT FLOWS:

THE FINITE-DIMENSIONAL CASE

VIRGINIA AGOSTINIANI AND RICCARDA ROSSI

Abstract. In this note we study the singular vanishing-viscosity limit of a gradient flow set in a finite-

dimensional Hilbert space and driven by a smooth, but possibly nonconvex, time-dependent energy functional.

We resort to ideas and techniques from the variational approach to gradient flows and rate-independent evo-

lution to show that, under suitable assumptions, the solutions to the singularly perturbed problem converge

to a curve of stationary points of the energy, whose behavior at jump points is characterized in terms of the

notion of Dissipative Viscosity solution. We also provide sufficient conditions under which Dissipative Viscosity

solutions enjoy better properties, which turn them into Balanced Viscosity solutions. Finally, we discuss the

generic character of our assumptions.

1. Introduction

We address the singular limit, as ε ↓ 0, of the gradient flow equation

εu′(t) + DEt(u(t)) = 0 in X for a.a. t ∈ [0, T ]. (1.1)

Here, (X, ‖ · ‖) is a finite-dimensional Hilbert space, and the driving energy functional E is smooth, i.e.

E ∈ C1([0, T ] ×X) (E0)

(DE denoting the differential with respect to the variable u), but we allow for the mapping u 7→ Et(u) to

be nonconvex. In this paper we aim to enucleate the basic ideas underlying a novel, variational approach to

this singular perturbation problem, partially inspired by the theory of Balanced Viscosity solutions to rate-

independent systems [10, 16, 17, 19]. Let us mention that this approach can be in fact adapted, and refined, to

study the singular limit (1.1) in an infinite-dimensional Hilbertian setting, and with a possibly nonsmooth, as

well as nonconvex, driving energy functional E, cf. the forthcoming [3]. The simpler setting considered in this

paper enables us to illustrate the cornerstones of our analysis, unhampered by the technical issues related to

nonsmoothness and infinite dimensionality. We will prove the convergence as ε ↓ 0 of (sequences of) solutions

to (the Cauchy problem for) (1.1), to a curve u : [0, T ] → X of critical points for E, i.e. fulfilling the stationary

problem

DEt(u(t)) = 0 in X for a.a. t ∈ [0, T ]. (1.2)

The properties of u will be codified by the two different notions of Dissipative Viscosity and Balanced Viscosity

solution.

Before illustrating our results, let us hint at the main analytical difficulties attached to the asymptotic

analysis of (1.1) as ε ↓ 0, as well as at the results available in the literature. In particular, in the following

lines we will focus on the case of (uniformly) convex energies, and of energy functionals Et(·) complying with

the transversality conditions. Let us also briefly mention that new results have emerged in the recent [5] for
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the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta

Matematica (INdAM).

1

http://arxiv.org/abs/1611.08105v1


2 VIRGINIA AGOSTINIANI AND RICCARDA ROSSI

linearly constrained evolution of critical points, based on a constructive approach instead of the vanishing-

viscosity analysis of (1.1).

Preliminary considerations. Under suitable conditions, for every fixed ε > 0 and for every u0 ∈ X there

exists at least a solution uε ∈ H1(0, T ;X) to the gradient flow (1.1), fulfilling the Cauchy condition uε(0) = u0.

Testing (1.1) by u′
ε, integrating in time, and exploiting the chain rule for E, it is immediate to check that uε

complies with the energy identity
∫ t

s

ε‖u′
ε(r)‖

2 dr + Et(uε(t)) = Es(uε(s)) +

∫ t

s

∂tEr(uε(r))dr for all 0 ≤ s ≤ t ≤ T , (1.3)

balancing the dissipated energy
∫ t

s ε‖u
′
ε(r)‖

2 dr with the stored energy and with the work of the external forces
∫ t

s ∂tEr(uε(r)) dr. From (1.3) all the a priori estimates on a family (uε)ε of solutions can be deduced. More

specifically, using the power control condition |∂tEt(u)| ≤ C1Et(u) +C2 for some C1, C2 > 0, via the Gronwall

Lemma one obtains
(i) The energy bound sup

t∈(0,T )

Et(uε(t)) ≤ C;

(ii) The estimate

∫ T

0

ε‖u′
ε(t)‖

2 dt ≤ C′,

(1.4)

for positive constants C, C′ > 0 independent of ε > 0. While (i), joint with a suitable coercivity condition on

E (typically, compactness of the energy sublevels), yields that there exists a compact set K ⊂ X s.t. uε(t) ∈ K

for all t ∈ [0, T ] and ε > 0, the equicontinuity estimate provided by (ii) degenerates as ε ↓ 0. Thus, no Arzelà-

Ascoli type result applies to deduce compactness for (uε)ε. This is the major difficulty in the asymptotic

analysis of (1.1).

Let us point out that this obstruction can be circumvented by convexity arguments. Indeed, if E ∈ C2([0, T ]×

X) with the mapping u 7→ Et(u) uniformly convex, then, starting from any u0 ∈ X with DE0(u0) = 0 and

D2E0(u0) (with D2E the second order derivative of E w.r.t. u) positive definite (then u0 is a non-degenerate

critical point of E0(·)), it can be shown there exists a unique curve u ∈ C1([0, T ];X) of stationary points, to

which the whole family (uε)ε converge as ε ↓ 0, uniformly on [0, T ].

Therefore, it is indeed significant to focus on the case in which the energy u 7→ Et(y) is allowed to be

nonconvex. In this context, two problems arise:

(1) Prove that, up to the extraction of a subsequence, the gradient flows (uε)ε converge as ε ↓ 0 to some

limit curve u, pointwise in [0, T ];

(2) Describe the evolution of u. Namely, one expects u to be a curve of critical points, jumping at degenerate

critical points for Et(·). In this connection, one aims to provide a thorough description of the energetic

behavior of u at jump points.

Results for smooth energies in finite dimension: the approach via the transversality conditions.

For the singular perturbation limit (1.1), a first answer to problems (1)&(2) was provided, still in finite

dimension, in [24], whose results were later extended to second order systems in [1]. The key assumptions are

that the energy E ∈ C3([0, T ] ×X)

(i) has a finite number of degenerate critical points,

(ii) the vector field F := DE complies with the so-called transversality conditions at every degenerate

critical point,

and a further technical condition. While postponing to Section 6 a discussion on the transversality conditions,

well-known in the realm of bifurcation theory (see, e.g., [11, 12, 23]) we may mention here that, essentially,

they prevent degenerate critical points from being “too singular”.

Then, in [24, Thm. 3.7] it was shown that, starting from a “well-prepared” datum u0, there exists a unique

piecewise C2-curve u : [0, T ] → X with a finite jump set J = {t1, . . . , tk}, such that:
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(1) DEt(u(t)) = 0 with D2Et(u(t)) positive definite for all t ∈ [ti, ti−1) and i = 1, . . . , k − 1;

(2) at every jump point ti ∈ J , the left limit u−(ti) is a degenerate critical point for Eti(·) and there

exists a unique curve v ∈ C2(R;X) connecting u−(ti) to the right limit u+(ti), in the sense that

lims→−∞ v(s) = u−(ti), lims→+∞ v(s) = u+(ti), and fulfilling

v′(s) + DEti(v(s)) = 0 for all s ∈ R; (1.5)

(3) the whole sequence (uε)ε converge to u uniformly on the compact sets of [0, T ]\J , and suitable rescalings

of uε converge to v.

Let us stress that the fact that at each jump point ti the unique heterocline v connecting the left and the right

limits u−(ti) and u+(ti), which is a gradient flow of the energy Eti(·), does bear a mechanical interpretation,

akin to the one for solutions to rate-independent processes obtained in the vanishing-viscosity limit of viscous

gradient systems, cf. [10, 16, 17, 19]. Namely, one observes that the internal scale of the system, neglected

in the singular limit ε ↓ 0, “takes over” and governs the dynamics in the jump regime, which can be in fact

viewed as a fast transition between two metastable states.

The structure of the statement in [24] reflects the line of its proof. First, the unique limit curve is a priori

constructed via the Implicit Function Theorem, also resorting to the transversality conditions. Secondly, the

convergence of (uε)ε is proved.

Our results. In this paper, we aim to extend the result from [24] to a wider class of energy functionals, still

smooth in the sense of (E0) but not necessarily of class C3, and not necessarily complying with the transversality

conditions. To this end, we will address the singular perturbation problem from a different perspective.

Combining ideas from the variational approach to gradient flows, possibly driven by nonsmooth and nonconvex

energies, cf. [4, 18, 20], with the techniques for the vanishing-viscosity approximation of rate-independent

systems from [17, 19], we will prove the existence of a limit curve by refined compactness. Variational arguments

will lead to a suitable energetic characterization of its fast dynamics at jumps. Indeed, the flexibility of this

approach will allow us to extend the results obtained in this paper, to the infinite-dimensional setting, and to

nonsmooth energies, in the forthcoming [3].

The starting point for our analysis is the key observation that, using equation (1.1) to the rewrite the

contribution
∫ t

s
ε‖u′

ε(r)‖
2 dr of the dissipated energy, the energy identity (1.3) can be reformulated as

∫ t

s

(

ε

2
‖u′

ε(r)‖
2+

1

2ε
‖DEr(uε(r))‖

2

)

dr + Et(uε(t)) = Es(uε(s)) +

∫ t

s

∂tEr(uε(r))dr (1.6)

for all 0 ≤ s ≤ t ≤ T . In addition to estimates (1.4), from (1.6) it is possible to deduce that
∫ T

0

‖DEr(uε(r))‖‖u
′
ε(r)‖dr ≤ C. (1.7)

Thus, while no (uniform w.r.t. ε > 0) bounds are available on ‖u′
ε‖, estimate (1.7) suggests that:

(i) The limit of the energy-dissipation integral
∫ t

s
‖DEr(uε(r))‖‖u

′
ε(r)‖dr will describe the dissipation of

energy (at jumps) in the limit ε ↓ 0;

(ii) To extract compactness information from the integral (1.7), with the degenerating weight ‖DEr(uε(r))‖,

it is necessary to suppose that the (degenerate) critical points of E, in whose neighborhood this weight

tends to zero, are somehow “well separated” one from each other.

In fact, in addition to the aforementioned coercivity and power control conditions on E, typical of the

variational approach to existence for non-autonomous gradient systems, in order to prove our results for the

singular limit (1.1) we will resort to the condition that for every t ∈ [0, T ] the critical set

C(t) := {u ∈ X : DEt(u) = 0} consists of isolated points . (1.8)

This will allow us to prove in Theorem 1, that, up to a subsequence, the gradient flows (uε)ε pointwise converge

to a solution u of the limit problem (1.2), defined at every t ∈ [0, T ], enjoying the following properties:
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(1) u : [0, T ] → X is regulated, i.e. the left and right limits u−(t) and u+(t) exist at every t ∈ (0, T ), and

so do the limits u+(0) and u−(T );

(2) u fulfills the energy balance

µ([s, t]) + Et(u+(t)) = Es(u−(s)) +

∫ t

s

∂tEr(u(r))dr for all 0 ≤ s ≤ t ≤ T, (1.9a)

with µ a positive Radon measure with an at most countable set J of atoms;

(3) u is continuous on [0, T ] \ J , and solves

DEt(u(t)) = 0 in X for all t ∈ [0, T ] \ J ;

(4) J coincides with the jump set of u, and there hold the jump relations

µ({t}) = Et(u−(t)) − Et(u+(t)) = c(t;u−(t), u+(t)) for all t ∈ J . (1.9b)

In (1.9b), the cost function c : [0, T ] × X × X → [0,+∞) is defined by minimizing the energy-dissipation

integrals, namely

c(t;u−, u+) := inf

{
∫ 1

0

‖DEt(ϑ(s))‖‖ϑ′(s)‖ds : ϑ ∈ A
t
u−,u+

}

for t ∈ [0, T ], u−, u+ ∈ X,

over a suitable class A t
u−,u+

of admissible curves connecting u− and u+. These curves somehow capture the

asymptotic behavior of the gradient flows (uε)ε on intervals shrinking to the jump point t. The jump relations

provide a description of the behavior of the limit curves at jumps: indeed, it is possible to deduce from (1.9b)

that any curve ϑ attaining the infimum in the definition of c(t;u−(t), u+(t)), hereafter referred to as optimal

jump transition, can be reparameterized to a curve ϑ̃ solving the analogue of (1.5), namely

ϑ̃′(σ) + DEt(ϑ̃(σ)) = 0 in X. (1.10)

Thus, the notion of solution to (1.2) given by (1)–(4), hereafter referred to as Dissipative Viscosity solution,

bears the same mechanical interpretation as the solution concept in [24].

Using the results of [2], we also show that our condition (1.8) on the critical points can be deduced from the

transversality conditions assumed in [24]. In turn, as we will see, these conditions have a generic character.

Our second main result, Theorem 2, shows that if E fulfills the following condition

lim sup
v→u

Et(v) − Et(u)

‖DEt(v)‖
≥ 0 at every u ∈ C(t) for all t ∈ [0, T ], (1.11)

then for every Dissipative Viscosity solution the absolutely continuous and the Cantor part of the associated

defect measure µ are zero. Hence, u improves to a Balanced Viscosity (in the sense of [16, 19]) solution of

(1.2). Observe (cf. Remark 2.5), that a sufficient condition for (1.11) is that E complies with the celebrated

 Lojasiewicz inequality, cf., e.g., [7, 14, 22], as well as the recent survey paper [8].

Plan of the paper. In Section 2 we enucleate our conditions on the energy functional E, and then give the

definition of admissible curve connecting two points and the induced notion of energy-dissipation cost c. We

then introduce the two notions of Dissipative Viscosity and Balanced Viscosity solutions to (1.2) and finally

state Theorems 1 & 2. In Section 3 we gain further insight into the properties of optimal jump transitions.

Section 4 is devoted to the analysis of the asymptotic behavior of the energy-dissipation integrals in the

vanishing-viscosity limit, and to the properties of the cost c. These results lie at the core of the proof of

Theorem 1, developed in Section 5 together with the proof of Theorem 2. In Section 6 we present examples of

energies complying with our set of assumptions. In particular, on the one hand we show that (1.8) is guaranteed

by the transversality conditions, whose genericity is discussed. On the other hand, we introduce the class of

subanalytic functions, which comply with the Lojasiewicz inequality, hence with (1.11).

Acknowledgment. We are extremely grateful to Giuseppe Savaré for suggesting this problem to us and for

several enlightening discussions and suggestions.
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2. Main results

Preliminarily, let us fix some general notation that will be used throughout. As already mentioned in

the introduction, X is a finite-dimensional Hilbert space (although all of the results of this paper could be

trivially extended to the, still finite-dimensional, Banach framework), with inner product 〈·, ·〉. Given x ∈ X

and ρ > 0, we will denote by B(x, ρ) the open ball centered at x with radius ρ.

We will denote by B([0, T ];X) the class of measurable, everywhere defined, and bounded functions from

[0, T ] to X , whereas M(0, T ) stands for the set of Radon measures on [0, T ].

Finally, the symbols c, C, C′, . . . will be used to denote a positive constant depending on given data, and

possibly varying from line to line.

Basic conditions on E. In addition to (E0), we will require

Coercivity: the map u 7→ G(u) := supt∈[0,T ] |Et(u)| fulfills

∀ ρ > 0 the sublevel set Sρ := {u ∈ X : G(u) ≤ ρ} is bounded. (E1)

Power control: the partial time derivative ∂tEt(u) =: Pt(u) fulfills

∃C1, C2 > 0 ∀ (t, u) ∈ [0, T ] : |Pt(u)| ≤ C1Et(u) + C2. (E2)

Observe that (E2) in particular yields that E is bounded from below. In what follows, without loss of generality

we will suppose that E is nonnegative. A simple argument based on the Gronwall Lemma ensures that

G(u) ≤ exp(C1T )

(

inf
t∈[0,T ]

Et(u) + C2 T

)

for all u ∈ X. (2.1)

Under these conditions, the existence of solutions to the gradient flow (1.1) is classical. Testing (1.1) by u′

and using the chain rule fulfilled by the (smooth) energy E leads to the energy identity (2.2) below, which will

be the starting point in the derivation of all our estimates for the singular perturbation limit as ε ↓ 0.

Theorem 2.1. Let E : [0, T ]×X → [0,+∞) comply with (E0), (E1), and (E2). Then, for every u0 ∈ X there

exists u ∈ H1(0, T ;X), with u(0) = u0, solving (1.1) and fulfilling for every 0 ≤ s ≤ t ≤ T the energy identity
∫ t

s

(

ε

2
‖u′(r)‖2 +

1

2ε
‖DEr(u(r))‖2

)

dr + Et(u(t)) = Es(u(s)) +

∫ t

s

Pr(u(r))dr. (2.2)

A condition on the critical points of E. In what follows, we will denote the set of the critical points of

Et(·), for fixed t ∈ [0, T ], by

C(t) :=
{

u ∈ X : DEt(u) = 0
}

,

and assume that

for every t ∈ [0, T ] the set C(t) consists of isolated points. (E3)

We postpone to Section 6 a discussion on sufficient conditions for (E3), as well as on its generic character.

Solution concepts. We now illustrate the two notions of evolution of curves of critical points that we will

obtain in the limit passage as ε ↓ 0. Preliminarily, we need to give the definitions of admissible curve and of

energy-dissipation cost, obtained by minimizing the energy-dissipation integrals along admissible curves. The

latter notion somehow encodes the asymptotic properties of (the energy-dissipation integrals along) sequences

of absolutely continuous curves (in fact, the solutions of our gradient flow equation), considered on intervals

shrinking to a point t ∈ [0, T ], cf. Proposition 4.1 ahead. Basically, admissible curves are piecewise locally

Lipschitz curves joining critical points. Note however that we do not impose that their end-points be critical.

That is why, we choose to confine our definition to the case the end-points are different: otherwise, we should

have to allow for curves degenerating to a single, possibly non-critical, point, which would not be consistent

with (2.3) below.

Definition 2.2. Let t ∈ [0, T ] and u1, u2 ∈ X be fixed.
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(1) In the case u1 6= u2, we call a curve ϑ ∈ C([0, 1];X) with ϑ(0) = u1 and ϑ(1) = u2 admissible if there

exists a partition 0 = t0 < t1 < . . . < tj = 1 such that

ϑ|(ti,ti+1) ∈ Clip
loc((ti, ti+1);X) for all i = 0, . . . , j − 1,

ϑ(ti) ∈ C(t) for all i ∈ {1, . . . , j − 1}, ϑ(r) /∈ C(t) ∀ r ∈ (ti, ti+1) for all i = 0, . . . , j − 1.
(2.3)

We will denote by A t
u1,u2

the class of admissible curves connecting u1 and u2 at time t. Furthermore,

for a given ρ > 0 we will use the notation

A
t,ρ
u1,u2

:=
{

ϑ ∈ A
t
u1,u2

: ϑ(s) ∈ Sρ for all s ∈ [0, 1]
}

.

(2) We define the energy-dissipation cost

ct(u1;u2) :=

{

inf
{

∫ 1

0
‖DEt(ϑ(s))‖‖ϑ′(s)‖ds : ϑ ∈ A t

u1,u2

}

if u1 6= u2,

0 if u1 = u2.
(2.4)

We call
∫ 1

0 ‖DEt(ϑ(s))‖‖ϑ′(s)‖ ds, for some ϑ ∈ A t
u1,u2

, energy-dissipation integral. Observe that, up to a

reparameterization, every absolutely continuous curve ϑ ∈ AC([a, b];X) such that ∃ a = t0 < t1 < . . . < tj = b

with

ϑ(ti) ∈ C(t), ϑ(ti) 6= ϑ(tj), ϑ(r) /∈ C(t) ∀ r ∈ (ti, ti+1)

for all i, k ∈ {1, . . . , j − 1}, i 6= k, is an admissible curve. Note that the chain-rule holds along admissible

curves ϑ with finite energy-dissipation integral at time t. This is the content of the following lemma, which

can be easily proved.

Lemma 2.3. Let t ∈ [0, T ] be fixed, and ϑ ∈ A t
u1,u2

be an admissible curve connecting u1 and u2 such that
∫ 1

0

‖DEt(ϑ(s))‖‖ϑ′(s)‖ds < ∞.

Then, the map s 7→ Et(ϑ(s)) belongs to AC([0, 1]) and there holds the chain rule

d

ds
Et(ϑ(s)) = 〈DEt(ϑ(s)), ϑ′(s)〉 for a.a. s ∈ (0, 1) . (2.5)

The following result, whose proof is postponed to Section 4, collects the properties of the cost c.

Theorem 2.4. Assume (E0)–(E3). Then, for every t ∈ [0, T ] and u1, u2 ∈ X we have:

(1) ct(u1;u2) = 0 if and only if u1 = u2;

(2) ct is symmetric;

(3) if ct(u1;u2) > 0, there exists an optimal curve ϑ ∈ A t
u1,u2

attaining the inf in (2.4);

(4) for every u3 ∈ C(t), the triangle inequality holds

ct(u1;u2) ≤ ct(u1;u3) + ct(u3;u2); (2.6)

(5) there holds

ct(u1;u2) ≤ inf
{

lim inf
n→∞

∫ tn2

tn1

‖DEs(ϑn(s))‖‖ϑ′
n(s)‖ds :

ϑn ∈ AC([tn1 , t
n
2 ];X), tni → t, ϑn(tni ) → ui for i = 1, 2

}

;

(2.7)

(6) the following lower semicontinuity property holds

(uk
1 , u

k
2) → (u1, u2) as k → ∞ ⇒ lim inf

k→∞
ct(u

k
1 ;uk

2) ≥ ct(u1;u2).

We are now in the position to give the definition of Dissipative Viscosity solution to equation (1.2).

Definition 1 (Dissipative Viscosity solution). We call Dissipative Viscosity solution to (1.2) a curve u ∈

B([0, T ];X) such that
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(1) for every 0 ≤ t < T and every 0 < s ≤ T , the left and right limits u−(s) := limτ↑s u(τ) and u+(t) :=

limτ↓t u(τ) exist, there exists a positive Radon measure µ ∈ M(0, T ) such that the set J of its atoms is

countable, and (u, µ) fulfill the energy identity

µ([s, t]) + Et(u+(t)) = Es(u−(s)) +

∫ t

s

Pr(u(r))dr for all 0 ≤ s ≤ t ≤ T, (2.8)

where we understand u−(0) := u(0) and u+(T ) := u(T );

(2) u is continuous on the set [0, T ] \ J , and

u(t) ∈ C(t) for all t ∈ (0, T ] \ J ; (2.9)

(3) The left and right limits fulfill

u−(s) ∈ C(s) and u+(t) ∈ C(t) at every 0 < s ≤ T and 0 ≤ t < T, (2.10a)

J = {t ∈ [0, T ] : u−(t) 6= u+(t)}, (2.10b)

0 < ct(u−(t);u+(t)) = µ({t}) = Et(u−(t)) − Et(u+(t)), for every t ∈ J. (2.10c)

A comparison between the energy balances (2.2) and (2.8) highlights the fact that the contribution to (2.8)

given by the measure µ([s, t]) surrogates the role of the energy-dissipation integral
∫ t

s ‖DEr(u(r))‖‖u′(r)‖dr .

That is why, in what follows we will refer to µ as the defect energy-dissipation measure (for short, defect

measure), associated with u. Let us highlight that, by (2.10b), u jumps at the atoms of µ, and that the jump

conditions (2.10c) provide a description of its energetic behavior in the jump regime (see Propositions 3.1 and

3.2).

The notion of Balanced Viscosity solution below brings the additional information that the measure µ is

purely atomic. Then, taking into account conditions (2.10c), we obtain

µ([s, t]) =
∑

r∈J∩[s,t]

µ({r}) =
∑

r∈J∩[s,t]

cr(u−(r);u+(r)) .

This results in a more transparent form of the energy balance (2.8), cf. (2.11) below, akin to the one featuring

in the notion of Balanced Viscosity solution to a rate-independent system, cf. [19].

Definition 2 (Balanced Viscosity solution). We call a Dissipative Viscosity solution u to (1.2) Balanced

Viscosity solution if the absolutely continuous and the Cantor part of the defect measure µ are zero. Therefore,

(2.8) reduces to

∑

r∈J∩[s,t]

cr(u−(r);u+(r)) + Et(u+(t)) = Es(u−(s)) +

∫ t

s

Pr(u(r))dr for every 0 ≤ s ≤ t ≤ T. (2.11)

Convergence to Dissipative Viscosity solutions. Our first main result, whose proof will be given

throughout Sections 4 & 5, ensures the convergence, up to a subsequence, of any family of solutions to (the

Cauchy problem for) (1.1), to a Dissipative Viscosity solution.

Theorem 1. Assume (E0)–(E3). Let (εn)n be a null sequence, and consider a sequence (u0
εn)n of initial data

for (1.1) such that

u0
εn → u0 as n → ∞. (2.12)

Then there exist a (not relabeled) subsequence and a curve u ∈ B([0, T ];X) such that

(1) the following convergences hold

uεn(t) → u(t) for all t ∈ [0, T ] (2.13)

uεn ⇀∗ u in L∞(0, T ;X), uεn → u in Lp(0, T ;X) for all 1 ≤ p < ∞; (2.14)

(2) u(0) = u0 and u is Dissipative Viscosity solution to (1.2).
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We now address the improvement of Dissipative Viscosity to Balanced Viscosity solutions, under the condi-

tion that at every t ∈ [0, T ] there holds

lim sup
v→u

Et(v) − Et(u)

‖DEt(v)‖
≥ 0 for all u ∈ C(t). (E4)

The proof of our second main result is also postponed to Section 5.

Theorem 2. In the setting of (E0)–(E2), assume in addition (E4). Let u be a Dissipative Viscosity solution

to (1.2) and let µ be its associated defect measure. Then, the absolutely continuous part µAC and the Cantor

part µCa of the measure µ are zero, i.e. u is a Balanced Viscosity solution to (1.2).

Remark 2.5 (A discussion of (E4)). Observe that (E4) is trivially satisfied in the case the functional u 7→ Et(u)

is convex. Indeed, if DEt(u) = 0, then Et(v) ≥ Et(u) for all v ∈ X .

Another sufficient condition for (E4) is that E complies with the celebrated  Lojasiewicz inequality, namely

∀ t ∈ [0, T ] ∀u ∈ C(t) ∃ θ ∈ (0, 1) ∃C > 0 ∃R > 0 ∀ v ∈ BR(u) : |Et(v) − Et(u)|θ ≤ C‖DEt(v)‖. (2.15)

In this case, we even have

lim
v→u

|Et(v) − Et(u)|

‖DEt(v)‖
≤ C lim

v→u
|Et(v) − Et(u)|1−θ = 0

by continuity of u 7→ Et(u).

3. Optimal jump transitions

In this section, we get further insight into the jump conditions (2.10c). Due to Theorem 2.4 (3), for every

t ∈ J the left and right limits u−(t) and u+(t) are connected by a curve ϑ ∈ A t
u−(t),u+(t) minimizing the cost

ct(u−(t);u+(t)), which will be hereafter referred to as an optimal jump transition between u−(t) and u+(t).

The following result states that every Clip
loc-piece of an optimal jump transition can be reparameterized to a

curve solving the gradient flow equation (3.1) below.

Proposition 3.1. Let u ∈ B([0, T ];X) be a Dissipative Viscosity solution to (1.2). Also, let t ∈ J be fixed,

and let ϑ ∈ A t
u−(t),u+(t) be an optimal jump transition between u−(t) and u+(t); let (a, b) ⊂ [0, 1] be such

that ϑ|(a,b) ∈ Clip
loc((a, b);X) and ϑ(s) /∈ C(t) for all s ∈ (a, b). Then, there exists a reparameterization σ 7→

s(σ) mapping a (possibly unbounded) interval (ã, b̃) into (a, b), such that the curve ϑ̃(σ) := ϑ(s(σ)) is locally

absolutely continuous and fulfills the gradient flow equation

ϑ̃′(σ) + DEt(ϑ̃(σ)) = 0 for a.a. σ ∈ (ã, b̃) . (3.1)

Proof. Any optimal jump transition ϑ ∈ A t
u−(t),u+(t) fulfills the jump condition (2.10c) with u−(t) = ϑ(0) and

u+(t) = ϑ(1). Combining this with the chain rule (see Lemma 2.3), we conclude that

d

ds
Et(ϑ(s)) = 〈DEt(ϑ(s)), ϑ′(s)〉 = −‖DEt(ϑ(s))‖‖ϑ′(s)‖ for a.a. s ∈ (a, b), (3.2)

hence

for a.a. s ∈ (a, b) ∃λ(s) > 0 : λ(s)ϑ′(s) + DEt(ϑ(s)) = 0. (3.3)

In order to find s = s(σ), we fix s̄ ∈ (a, b) and set

σ(s) :=

∫ s

s̄

1

λ(r)
dr . (3.4)

Indeed, it follows from (3.3) that λ(s) = ‖DEt(ϑ(s))‖
‖ϑ′(s)‖ for almost all s ∈ (a, b). Since s ∈ (a, b) 7→ ‖DEt(ϑ(s))‖

is strictly positive and continuous, and since ϑ is locally Lipschitz on (a, b), it is immediate to deduce that for

every closed interval [a + ρ, b − ρ] ⊂ (a, b) there exists λρ > 0 such that λ(s) ≥ λρ for all s ∈ [a + ρ, b − ρ].
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Therefore, σ is a well-defined, locally Lipschitz continuous map with σ′(s) > 0 for almost all s ∈ (a, b). We let

ã := σ(a), b̃ := σ(b), and set s : (ã, b̃) → (a, b) to be the inverse map of σ: it satisfies

s
′(σ) = λ(s(σ)) for a.a. σ ∈ (ã, b̃), (3.5)

and it is an absolutely continuous map, being
∫ b̃

ã s
′(σ)dσ =

∫ b̃

ã λ(s(σ))dσ = b − a. Using the definition of

ϑ̃, (3.5), and (3.3), we conclude that ϑ̃ fulfills (3.1). Since s is absolutely continuous and ϑ locally Lipschitz

continuous, the curve ϑ̃ turns out to be locally absolutely continuous. �

The symmetry property of the cost proved in Theorem 2.4 (2) gives some information about the number of

the optimal jump transitions. This is the content of the following proposition.

Proposition 3.2. Let u ∈ B([0, T ];X) be a Dissipative Viscosity solution to (1.2), and let t ∈ J . There exists

a finite number of optimal jump transitions between u−(t) and u+(t).

Proof. Suppose by contradiction that there exists an infinite number of optimal jump transitions connecting

x := u−(t) and y := u+(t) and, for an arbitrary natural number N , choose 2N + 1 of them: ϑ1, ..., ϑ2N+1.

Let us fix an arbitrary partition 0 = t0 < . . . < t2N+1 = 1. We can suppose that, up to reparametrizations,

ϑ2i+1 : [t2i, t2i+1] → X is such that ϑ2i+1(t2i) = x, ϑ2i+1(t2i+1) = y for i = 0, ..., N , and ϑ2i : [t2i−1, t2i] → X

is such that ϑ2i(t2i−1) = y, ϑ2i(t2i) = x for i = 1, ..., N . Consider the function ϑ : [0, 1] → X defined as

ϑ :=

{

ϑ2i+1 on [t2i, t2i+1] for i = 0, ..., N,

ϑ2i on [t2i−1, t2i] for i = 1, ..., N,

and note that ϑ(0) = x and ϑ(1) = y. Therefore, by the chain rule we have

+∞ > Et(x) − Et(y) = −

2N
∑

i=0

∫ ti+1

ti

〈DEt(ϑi+1(s)), ϑ′
i+1(s)〉ds

=

2N
∑

i=0

∫ ti+1

ti

‖DEt(ϑi+1(s))‖‖ϑ′
i+1(s)‖ds = (2N + 1)ct(x; y),

where the second equality is due to the fact that ϑi+1 is an optimal jump transition on [ti, ti+1] for i = 0, ..., 2N

(cf. (3.2)), and the third descends from the symmetry of the cost. Since N can be chosen arbitrarily large, the

above equalities give a contradiction. �

In what follows we show that, if the energy E complies with the  Lojasiewicz inequality (2.15) (which implies

(E4), as observed in Remark 2.5), the optimal jump transitions connecting jump points of Balanced Viscosity

solutions (see Definition 2 and Theorem 2) have a further property. In fact, they have finite length.

Theorem 3.3. In the setting of (E0)–(E2), assume in addition (2.15), and let u be a Balanced Viscosity

solution to (1.2). For t ∈ [0, T ] fixed, let ϑ ∈ A t
u−(t),u+(t) be an optimal jump transition between u−(t) and

u+(t), and let (a, b) ⊂ [0, 1] be such that ϑ|(a,b) ∈ Clip
loc((a, b);X), ϑ(s) /∈ C(t) for all s ∈ (a, b), and ϑ(a),

ϑ(b) ∈ C(t). Then the curve ϑ|(a,b) has finite length.

For the proof of Theorem 3.3 we shall exploit the crucial fact that, since ϑ is an optimal jump transition,

(a reparameterization of) ϑ|(a,b) is a gradient flow of the energy Et, cf. Proposition 3.1. This will allow us to

develop arguments for gradient systems driven by energies satisfying the  Lojasiewicz inequality, showing that

the related trajectories have finite length.

Proof. Recall from Proposition 3.1 that ϑ|(a,b) can be reparameterized to a curve ϑ̃ on a (possibly unbounded)

interval (ã, b̃) such that ϑ̃ fulfills the gradient flow equation

ϑ̃′(σ) + DEt(ϑ̃(σ)) = 0 for a.a. σ ∈ (ã, b̃). (3.6)
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Observe that for every R > 0 there exists σR > ã such that

ϑ̃(σ) ∈ BR(ϑ(b)) for every σ > σR. (3.7)

Supposing for simplicity that Et(ϑ(b)) = 0, observe that (2.15) reads
(

Et(v)
)θ

≤ C‖DEt(v)‖ for all v ∈ BR(ϑ(b)). (3.8)

From (3.6), (3.7) and (3.8) we deduce that for every σ̃ ∈ (σR, b̃) it holds
∫ σ̃

σR

‖ϑ̃′(σ)‖dσ =

∫ σ̃

σR

‖DEt(ϑ̃(σ))‖dσ ≤ C

∫ σ̃

σR

‖DEt(ϑ̃(σ))‖2
(

Et(ϑ̃(σ))
)θ

dσ

= −
C

1 − θ

[

(

Et(ϑ̃(σ̃))
)1−θ

−
(

Et(ϑ̃(σR))
)1−θ

]

≤ C′.

Note that in the second equality we have used the fact that

d

dσ

(

Et(ϑ̃(σ))
)1−θ

= −(1 − θ)
(

Et(ϑ̃(σ))
)−θ

‖DEt(ϑ̃(σ))‖2,

cf. also (3.2). In particular, we have obtained that
∫

b

sb,R
‖ϑ′(s)‖ ds < ∞, for some sb,R ∈ (a, b). Arguing in

a similar way, one can obtain that
∫ sa,R
a

‖ϑ′(s)‖ ds < ∞ as well, for some sa,R ∈ (a, b), and this finishes the

proof. �

4. Properties of the energy-dissipation integrals and cost

In order to prove Thm. 2.4 on properties of the cost function c, it is necessary to investigate the limit of the

energy-dissipation integrals
∫ 1

0
‖DEt(ϑ(s))‖‖ϑ′(s)‖ds, which enter in the definition (2.4) of ct, along sequences

of (admissible) curves. This section collects all the technical results underlying the proof of convergence to

Dissipative Viscosity solutions.

With our first result, Proposition 4.1, we gain insight into the asymptotic behavior of the energy-dissipation

integrals
∫ tn2
tn1

‖DEr(ϑn(r))‖ ‖ϑ′
n(r)‖ dr, where the curves (ϑn)n are defined on intervals [tn1 , t

n
2 ] shrinking to a

singleton {t}, whereas in the integrand ‖DE·(ϑn(·))‖ ‖ϑ′
n(·)‖ the time variable is not fixed. Both Proposition

4.1 and a variant of it, Proposition 4.5, will be at the core of the proof of Thm. 2.4. Their proof is based on a

reparameterization technique, combined with careful compactness arguments for the reparameterized curves.

Proposition 4.1. Assume (E0)–(E3). Let t ∈ [0, T ], ρ > 0, and u1, u2 ∈ X be fixed and let (tn1 )n, (tn2 )n, with

0 ≤ tn1 ≤ tn2 ≤ T for every n ∈ N, and (ϑn)n ⊂ AC([tn1 , t
n
2 ];X) fulfill

tn1 , t
n
2 → t, ϑn(tn1 ) → u1, ϑn(tn2 ) → u2 . (4.1)

Then, the following implications hold:

(1) If

lim inf
n→∞

∫ tn2

tn1

‖DEr(ϑn(r))‖ ‖ϑ′
n(r)‖dr = 0, (4.2)

then u1 = u2;

(2) In the case u1 6= u2, so that

lim inf
n→∞

∫ tn2

tn1

‖DEr(ϑn(r))‖ ‖ϑ′
n(r)‖dr > 0, (4.3)

there exists ϑ ∈ A t
u1,u2

such that

lim inf
n→∞

∫ tn2

tn1

‖DEr(ϑn(r))‖ ‖ϑ′
n(r)‖dr ≥

∫ 1

0

‖DEt(ϑ(s))‖ ‖ϑ′(s)‖ds. (4.4)

Preliminarily, we need the following result.
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Lemma 4.2. Let K be a closed subset of some sublevel set Sρ, with ρ > 0, and suppose that for some t ∈ (0, T )

inf
u∈K

‖DEt(u)‖ > 0. (4.5)

Then, the inf in (4.5) is attained, and there exists α = α(t) > 0 such that

min
u∈K,s∈[t−α,t+α]

‖DEs(u)‖ > 0 . (4.6)

Proof. It follows from (E1) that K is compact, therefore infu∈K ‖DEs(u)‖ is attained for every s ∈ [0, T ], and

the function s 7→ minu∈K ‖DEs(u)‖ is continuous since E ∈ C1([0, T ] ×X). Combining this fact with (4.5), we

conclude (4.6). �

We are now in the position to develop the proof of Proposition 4.1: preliminarily, we observe that there

exists ρ > 0 such that the curves (ϑn)n in (4.1) fulfill

ϑn([tn1 , t
n
2 ]) ⊂ Sρ for every n ∈ N . (4.7)

Indeed, since E0(·) is continuous, from ϑn(tni ) → ui for i = 1, 2 we deduce that supn |E0(ϑn(tn1 ))|+|E0(ϑn(tn2 ))| ≤

C. Hence, supn G(ϑn(tn1 )) + G(ϑn(tn2 )) ≤ C′ in view of (2.1). We now apply the chain rule along the curve ϑn

to conclude that

Et(ϑn(t)) ≤ Etn1
(ϑn(tn1 )) +

∫ t

tn1

∂tEr(ϑn(r))dr +

∫ tn2

tn1

‖DEr(ϑn(r))‖‖ϑ′
n(r)‖dr.

From the above estimate, we immediately conclude via the power estimate (E2), the Gronwall Lemma,

and condition (4.2) in the case u1 = u2 (estimate (4.12) ahead in the case u1 6= u2, respectively), that

supn supt∈[tn1 ,t
n
2 ]
Et(ϑn(t)) ≤ C. Then, (4.7) ensues.

Ad Claim (1): By contradiction, suppose that u1 6= u2. Thanks to (E3) the set Sρ ∩ C(t) is finite (since the

energy sublevel Sρ is compact in X by (E1)), hence there exists δ = δ(t, u1, u2) such that

B(x, 2δ) ∩B(y, 2δ) = Ø, for every x, y ∈ (C(t)∩Sρ) ∪ {u1, u2} with x 6= y for all 0 < δ ≤ δ. (4.8)

Observe that u1 may well belong to C(t) as well as not, and the same for u2. Let us introduce the compact set

Kδ defined by

Kδ := Sρ \
⋃

x∈(C(t)∩Sρ)∪{u1,u2}

B(x, δ) (4.9)

and remark that minu∈Kδ
‖DEt(u)‖ > 0. It follows from Lemma 4.2 that for some α = α(t, u1, u2) > 0

eδ := min
u∈Kδ,r∈[t−α,t+α]

‖DEr(u)‖ > 0. (4.10)

Note that [tn1 , t
n
2 ] ⊂ [t − α, t + α] for every n sufficiently large. Moreover, from (4.1) and from the definition

of Kδ we obtain that {r ∈ [tn1 , t
n
2 ] : ϑn(r) ∈ Kδ} 6= Ø for every n large enough, and that ϑn(r1) ∈ ∂B(u1, δ),

ϑn(r2) ∈ ∂B(u2, δ), for some r1, r2 ∈ {r ∈ [tn1 , t
n
2 ] : ϑn(r) ∈ Kδ} with r1 6= r2. Thus, by (4.10),

∫ tn2

tn1

‖DEr(ϑn(r))‖‖ϑ′
n(r)‖dr ≥

∫

{r∈[tn1 ,t
n
2 ] :ϑn(r)∈Kδ}

‖DEr(ϑn(r))‖‖ϑ′
n(r)‖dr

≥ eδ

∫

{r∈[tn1 ,t
n
2 ] :ϑn(r)∈Kδ}

‖ϑ′
n(r)‖dr,

≥ eδ min
x,y∈(C(t)∩Kδ)∪{u1,u2}

(‖x− y‖ − 2δ)
.
= η. (4.11)

Observe that η is positive in view of (4.10) and of the definition of δ from (4.8). Thus we have a contradiction

with (4.2).
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Ad Claim (2): Suppose that u1 6= u2. Up to a subsequence we can suppose that there exists

lim
n→∞

∫ tn2

tn1

‖DEr(ϑn(r))‖ ‖ϑ′
n(r)‖dr =: Lt > 0,

hence

sup
n∈N

∫ tn2

tn1

‖DEr(ϑn(r))‖ ‖ϑ′
n(r)‖dr ≤ C < ∞. (4.12)

We split the proof of (4.4) in several steps.

Step 1: reparameterization. Let us define, for every r ∈ [tn1 , t
n
2 ],

sn(r) := r +

∫ r

tn1

‖DEτ (ϑn(τ))‖ ‖ϑ′
n(τ)‖dτ.

Also, we set

sn1 := sn(tn1 ) = tn1 , sn2 := sn(tn2 ),

and note that

sn1 → t, sn2 → (t + Lt) > t.

Since s′n > 0, we define

rn(s) := s−1
n (s) and ϑ̃n(s) := ϑn(rn(s)) for every s ∈ [sn1 , s

n
2 ].

Observe that

ϑ̃n(sn1 ) → u1, ϑ̃n(sn2 ) → u2, (4.13)

that (rn)n is equi-Lipschitz and that

‖DErn(s)(ϑ̃n(s))‖ ‖ϑ̃′
n(s)‖ = 1 −

1

1 + ‖DErn(s)(ϑ̃n(s))‖ ‖ϑ̃′
n(s)‖

≤ 1 for a.a. s ∈ (sn1 , s
n
2 ). (4.14)

The change of variable formula yields

∫ tn2

tn1

‖DEr(ϑn(r))‖ ‖ϑ′
n(r)‖dr =

∫ sn2

sn1

‖DErn(s)(ϑ̃n(s))‖ ‖ϑ̃′
n(s)‖ds. (4.15)

Step 2: localization and equicontinuity estimates. Let δ, δ > 0, Kδ, and eδ be as in (4.8), (4.9), (4.10),

and define the open set

Aδ
n :=

{

s ∈ (sn1 , s
n
2 ) : ϑ̃n(s) ∈ int(Kδ)

}

.

Observe that Aδ
n 6= Ø for every n sufficiently large, in view of the definition of Kδ and of (4.13). We write Aδ

n

as the countable union of its connected components

Aδ
n =

∞
⋃

k=1

(aδn,k, b
δ
n,k) with bδn,k ≤ aδn,k+1 for all k ∈ N. (4.16)

Inequality (4.14), the definition (4.10) of eδ, and the definition of aδn,k and bδn,k imply that

eδ‖ϑ̃
′
n(s)‖ ≤ ‖DErn(s)(ϑ̃n(s))‖ ‖ϑ̃′

n(s)‖ ≤ 1 for a.a. s ∈
(

aδn,k, b
δ
n,k

)

. (4.17)

Furthermore, it is clear that

ϑ̃n(aδn,k) ∈ ∂B(x, δ), ϑ̃n(bδn,k) ∈ ∂B(y, δ) for some x, y ∈ (C(t)∩Sρ) ∪ {u1, u2}. (4.18)

Note that it may happen x = y. Nonetheless, from now on we will just focus on the case where x 6= y in (4.18)

and we will show that there is a finite number of intervals (aδn,k, b
δ
n,k) on which ϑ̃n travels from one ball to
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another, centered at a different point in (C(t)∩Sρ) ∪ {u1, u2}. In this way, we will conclude that the function

ϑ of the statement consists of a finite number of Clip
loc-pieces. To this aim, let us introduce the set

Bδ
n :=

⋃

(aδ
n,k

,bδ
n,k

)∈Bδ
n

(aδn,k, b
δ
n,k) with

B
δ
n =

{

(aδn,k, b
δ
n,k) ⊂ Aδ

n : ϑ̃n(aδn,k) ∈ ∂B(x, δ), ϑ̃n(bδn,k) ∈ ∂B(y, δ) for x, y ∈ C(t)∩Sρ, x 6= y
}

.

(4.19)

From (4.15), (4.17), and the definition of Aδ
n and Bδ

n, we obtain
∫ tn2

tn1

‖DEr(ϑn(r))‖ ‖ϑ′
n(r)‖dr ≥

∫

Aδ
n

‖DErn(s)(ϑ̃n(s))‖ ‖ϑ̃′
n(s)‖ds

≥ eδ

∫

Bδ
n

‖ϑ̃′
n(s)‖ds

≥ eδ
∑

(aδ
n,k

,bδ
n,k

)∈Bδ
n

m, (4.20)

where 0 < m := minx,y∈C(t)∪{u1 ,u2}

πt(x) 6=πt(y)

(‖x− y‖− 2δ). Inequality (4.20), together with estimate (4.12), implies that

Bδ
n has a finite number N(n, δ) of components, more precisely

N(n, δ) ≤
C

eδm
for every 0 < δ ≤ δ, n ∈ N, (4.21)

with C from (4.12). In what follows, we will show that we may take N(n, δ) to be bounded uniformly w.r.t.

n ∈ N and δ > 0 (cf. (4.24) ahead).

For this, we need to fix some preliminary remarks. In view of the ordering assumed in (4.16), we have that

ϑ̃n(aδn,1) ∈ ∂B(u1, δ), ϑ̃n(bδn,N(n,δ)) ∈ ∂B(u2, δ). (4.22)

Also, observe that, up to throwing some of the intervals (aδn,k, b
δ
n,k) ∈ B

δ
n away, we may suppose that for every

fixed x ∈ (C(t)∩Sρ) ∪ {u1, u2}, if ϑ̃(aδn,k) ∈ ∂B(x, δ) for some k, then ϑ̃(bδn,m) /∈ ∂B(x, δ) for every m > k.

Finally, note that for all (aδn,k, b
δ
n,k) ∈ B

δ
n there holds

1

eδ
(bδn,k − aδn,k) ≥ ‖ϑ̃n(bδn,k) − ϑ̃n(aδn,k)‖ ≥ m, (4.23)

where the first inequality ensues from (4.17), and the second one is due to the definition of m.

Remark 4.3. Observe that a bound for N(n, δ), uniform with respect to n ∈ N and δ > 0, cannot be directly

deduced from (4.21) since the constant C/(eδm) grows as δ decreases. Indeed, eδ goes to zero as δ → 0.

Step 3: compactness. We will prove the following

Claim: there exist a sequence (nj , δmj
)j, such that

N(nj, δmj
) = N for every j ∈ N, (4.24)

a partition

{t ≤ α1 < β1 ≤ α2 < β2 ≤ ... ≤ αN < βN ≤ t + Lt} of [t, t + Lt], and (4.25)

a curve ϑ ∈ Clip
loc

(

⋃N
k=1(αk, βk);X

)

such that, in the limit j → ∞,

ϑ̃nj
→ ϑ uniformly on compact subsets of

N
⋃

k=1

(αk, βk),

ϑ̃′
nj

⇀∗ ϑ′ in L∞(αk + η, βk − η;X) for every η > 0 and k = 1, . . . , N .

(4.26)

Therefore, ϑ(s) ∈ Sρ for every s ∈
⋃N

k=1(αk, βk).



14 VIRGINIA AGOSTINIANI AND RICCARDA ROSSI

First of all, let us observe that, since (N(n, δ))n is a bounded sequence by (4.21), there exists a subsequence

(nδ
l )l and an integer N(δ) such that

N(nδ
l , δ) → N(δ) as l → ∞. (4.27)

Clearly, since u1 6= u2, taking (4.13) into account we see that N(δ) ≥ 1 for every 0 < δ ≤ δ. Also, for every

fixed n ∈ N, we have that

N(n, δ) decreases as δ decreases. (4.28)

Indeed, if δ1 > δ2, then Kδ1 ⊂ Kδ2 and in turn Bδ1
n ⊂ Bδ2

n . This means that, for every k ∈ {1, ..., N(n, δ1)},

we have

(aδ1n,k, b
δ1
n,k) ⊂ (aδ2n,jk , b

δ2
n,jk

), for some jk ∈ {1, ..., N(n, δ2)}. (4.29)

At the same time, (aδn,k, b
δ
n,k) ⊂ [sn1 , s

n
2 ] for every 0 < δ ≤ δ, for every n, and for every k = 1, ..., N(n, δ), and

there holds [sn1 , s
n
2 ] → [t, t + Lt] as n → ∞. Therefore we may suppose that there exists η > 0 such that for

every n ∈ N and k = 1, ..., N(n, δ) there holds (aδn,k, b
δ
n,k) ⊂ [t− η, t + Lt + η]. This fact, coupled with (4.29),

gives (4.28).

In order to prove (4.24), we develop the following diagonal argument. Consider a sequence (δm)m ⊂ (0, δ]

such that δm → 0, as m → ∞. Using (4.27) and (4.28), it is possible to construct for each m ∈ N a subsequence

(nm
l )l, where nm

l is a short-hand notation for nδm
l , such that

N(nm
l , δm) → N(δm) as l → ∞ for every m ∈ N, (4.30)

N(δ1) ≥ N(δ2) ≥ ... ≥ N(δm) ≥ ... ≥ 1, (4.31)

and

aδmnm
l
,k → αm

k , bδmnm
l
,k → βm

k as l → ∞ for all k = 1, ..., N(δm) and all m ∈ N. (4.32)

Due to (4.23), one has αm
k < βm

k for all k = 1, ..., N(δm) and all m ∈ N. Now, since (N(δm))m is a decreasing

sequence of integers, we may suppose that

there exists N ∈ N such that N(δm) = N for every m ∈ N, (4.33)

and that there exist the limits

αk := lim
m→∞

αm
k , βk := lim

m→∞
βm
k for every k = 1, ..., N. (4.34)

Note that the points αk, βk satisfy (4.25) with N from (4.33). Hence, choose k ∈ {1, ..., N} and observe that

for every j ∈ N arbitrarily large there exists mj and lj such that
[

αk +
1

j
, βk −

1

j

]

⊂

(

a
δmj

n
mj

l
,k
, b

δmj

n
mj

l
,k

)

for every l ≥ lj, (4.35)

and
∣

∣

∣

∣

a
δmj

n
mj
l

,k
− α

mj

k

∣

∣

∣

∣

+

∣

∣

∣

∣

b
δmj

n
mj
l

,k
− β

mj

k

∣

∣

∣

∣

≤
1

mj
for every l ≥ lj . (4.36)

Moreover, we can suppose that mj , lj → ∞, as j → ∞. We combine (4.35) with estimate (4.17) for (ϑ̃′
n)n and

the fact that ϑ̃n(s) ∈ Sρ for every s ∈ [sn1 , s
n
2 ]. The Arzelà-Ascoli Theorem ensures that, up to a subsequence,

ϑ̃
n
mj
l

→ ϑ in C0

([

αk +
1

j
, βk −

1

j

]

;X

)

as l → ∞, (4.37a)

ϑ̃′

n
mj

l

⇀∗ ϑ′ in L∞

(

αk +
1

j
, βk −

1

j
;X

)

as l → ∞ (4.37b)

for some ϑ ∈ Clip
([

αk + 1
j , βk −

1
j

]

;X
)

.
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If at each step j we extract a subsequence from the previous one, we may obtain a sequence (n
mj

lj
)j , which

we relabel by (nj)j , and a unique ϑ ∈ Clip
loc

(

⋃N
k=1(αk, βk);X

)

, such that for all j ∈ N and k ∈ {1, ..., N} there

holds
[

αk +
1

j
, βk −

1

j

]

⊂
(

ãj,k, b̃j,k

)

, where ãj,k := a
δmj

nj ,k
, b̃j,k := b

δmj

nj,k
, (4.38)

‖ϑ̃nj
(s) − ϑ(s)‖ <

1

j
for every s ∈

[

αk +
1

j
, βk −

1

j

]

. (4.39)

Therefore, we have proved (4.24)–(4.26). From (4.34) and (4.36) we obtain also that

ãj,k → αk, b̃j,k → βk as j → ∞, (4.40)

where ãj,k, b̃j,k are defined in (4.38). These observations will be useful in Step 5.

Remark 4.4. Let us recall (cf. (4.24)), that N is the number of the pieces of the trajectory of ϑ̃nj
which go from

∂B(x, δmj
) to ∂B(y, δmj

), for some x, y ∈ (C(t)∩Sρ)∪{u1, u2} with x 6= y. Thus, we have so far excluded that,

for example, on some interval (ãj,k, b̃j,k) the trajectory of ϑ̃nj
runs from ∂B(x, δmj

) to ∂B(x, δmj
). Moreover,

so far we have overlooked what happens to the trajectory of ϑ̃nj
on the interval [b̃j,k, ãj,k+1]. It is not difficult

to imagine that, if βk < αk+1 some “loops” around a certain connected component of (C(t)∩Sρ)∪{u1, u2} may

have been created by the trajectories of ϑ̃nj
on [b̃j,k, ãj,k+1] as j → ∞. Note that we cannot deduce that the

number of these loops is definitely bounded, as we have done for N(nj , δmj
).

Step 4: passage to the limit. In order to take the limit of the integral term in (4.4), we observe that

∫ t
nj
2

t
nj
1

‖DEr(ϑnj
(r))‖ ‖ϑ′

nj
(r)‖dr ≥

N
∑

k=1

∫ b̃j,k

ãj,k

‖DErnj
(s)(ϑ̃nj

(s))‖ ‖ϑ̃′
nj

(s)‖ds

≥

N
∑

k=1

∫ βk−1/j

αk+1/j

‖DErnj
(s)(ϑ̃nj

(s))‖ ‖ϑ̃′
nj

(s)‖ds,

(4.41)

where we have used (4.24) and (4.38). We now pass to the limit as j → ∞ in (4.41). Observe that, since

(rnj
(s))j ⊂ [t

nj

1 , t
nj

2 ] for every s ∈ [s
nj

1 , s
nj

2 ], then rnj
(s) → t as j → ∞. Hence, the first convergence in (4.26)

yields

lim
j→∞

‖DErnj
(s)(ϑ̃nj

(s))‖ = ‖DEt(ϑ(s))‖ for every s ∈ [αk + η, βk − η], η > 0, k = 1, . . . , N. (4.42)

Combining (4.42) with the second of (4.26) and applying Ioffe’s Theorem [13], we have that

lim inf
j→∞

∫ βk−1/j

αk+1/j

‖DErnj
(s)(ϑ̃nj

(s))‖ ‖ϑ̃′
nj

(s)‖ds ≥

∫ βk−η

αk+η

‖DEt(ϑ(s))‖ ‖ϑ′(s)‖ds (4.43)

for all η > 0, k = 1, . . . , N. From (4.43) and (4.12) it follows that the map s 7→ ‖DEt(ϑ(s))‖ ‖ϑ′(s)‖ is integrable

on (αk, βk) for all k = 1, . . . , N . Summing up, we conclude that

lim inf
j→∞

∫ t
nj
2

t
nj
1

‖DEr(ϑnj
(r))‖ ‖ϑ′

nj
(r)‖dr ≥

N
∑

k=1

∫ βk

αk

‖DEt(ϑ(s))‖ ‖ϑ′(s)‖ds. (4.44)

Step 5: conclusion of the proof of Proposition 4.1. Relying on the previously proved part (1) of the

statement, the first of (4.26), and the inclusion in (4.38), we will now show that

lim
s→α+

1

ϑ(s) = u1, lim
s→β−

N

ϑ(s) = u2 (4.45)

and that

lim
s→β−

k

ϑ(s) = lim
s→α+

k+1

ϑ(s) = x for some x ∈ (C(t)∩Sρ) ∪ {u1, u2}, (4.46)
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for every k = 1, ..., N − 1. Let us only check the first limit in (4.45), since the other limits can be verified in a

similar way. Let (si)i ⊂ (α1, β1) be a sequence such that si → α+
1 as i → ∞. We want to prove that

lim
i→∞

ϑ(si) = u1. (4.47)

Now, let us fix i ∈ N: the first of (4.26) gives that ϑ̃nj
(si) → ϑ(si) as j → ∞. In particular, there exists a

strictly increasing sequence (ji)i such that

‖ϑ̃nji
(si) − ϑ(si)‖ ≤

1

i
for every i ∈ N. (4.48)

Note that ãji,1 → α1 as i → ∞, in view of (4.40). Moreover, from the definition (4.38) of ãji,1 and (4.22) it

follows that

lim
i→∞

ϑ̃nji
(ãji,1) = u1 . (4.49)

Next, observe that from (4.14) and from the fact that si, ãji,1 → α1 as i → ∞, we have that
∫ ãji,1

si

‖DErnji
(s)(ϑ̃nji

(s))‖ ‖ϑ̃′
nji

(s)‖ds ≤ |si − ãji,1| → 0 as i → ∞. (4.50)

Also, we have that
∫ ãji,1

si

‖DErnji
(s)(ϑ̃nji

(s))‖ ‖ϑ̃′
nji

(s)‖ds =

∫ r̃i

ri

‖DEr(ϑnji
(r))‖ ‖ϑ′

nji
(r)‖dr, (4.51)

for some (ri)i, (r̃i)i ⊂
[

t
nji

1 , t
nji

2

]

, where

ϑnji
(ri) = ϑ̃nji

(si), ϑnji
(r̃i) = ϑ̃nji

(ãji,1) for every i ∈ N. (4.52)

Furthermore, we can suppose that, up to a subsequence, ri ≤ r̃i for every i, and that

ϑnji
(ri) → x̂ for some x̂ ∈ X. (4.53)

We combine this fact with the limit

ϑnji
(r̃i) → u1, as i → ∞

which comes from (4.49) and the second of (4.52), and apply Proposition 4.1 (1) to the sequence (ϑnji
)i on the

shrinking interval [ri, r̃i], using that
∫ r̃i
ri

‖DEr(ϑnji
(r))‖ ‖ϑ′

nji
(r)‖dr → 0 by (4.51). Therefore,

ϑ̃nji
(si) = ϑnji

(ri) → u1 as i → ∞, (4.54)

Inequality (4.48) and convergence (4.54) imply (4.47).

By the limits in (4.45) and (4.46) we can trivially extend ϑ to the whole interval [α1, βN ] and obtain, from

(4.44), that

lim inf
n→∞

∫ tn2

tn1

‖DEr(ϑn(r))‖ ‖ϑ′
n(r)‖dr ≥

∫ βN

α1

‖DEt(ϑ(s))‖ ‖ϑ′(s)‖ds.

Thus, we have deduced the lim inf-inequality (4.4), with a curve defined on the interval [a, b] = [α1, βN ].

Finally, by the scaling invariance of the integral on the right-hand side of (4.4), we can reparameterize the

limiting curve ϑ in such a way as to have it defined on the interval [0, 1], in accord with the definition (2.3) of

admissible curves. This concludes the proof.

We now give a variant of Proposition 4.1, in which the curves ϑn belong to the class A t
un
1 ,u

n
2
, for t ∈ [0, T ]

fixed, and with (un
1 ), (un

2 ) ⊂ X given sequences, and the integrands ‖DEr(ϑn(r))‖ ‖ϑ′
n(r)‖ in (4.4) are replaced

by ‖DEt(ϑn(r))‖ ‖ϑ′
n(r)‖.

Proposition 4.5. Assume (E0)–(E3). Given t ∈ [0, T ], ρ > 0, and u1, u2 ∈ X, let (un
1 )n, (un

2 )n fulfill

un
1 → u1, u

n
2 → u2, and let ϑn ∈ A t

un
1 ,u

n
2
for every n. The following two implications hold:

(1) If lim infn→∞

∫ 1

0 ‖DEt(ϑn(s))‖ ‖ϑ′
n(s)‖ds = 0, then u1 = u2;
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(2) If u1 6= u2, so that

lim inf
n→∞

∫ 1

0

‖DEt(ϑn(s))‖ ‖ϑ′
n(s)‖ds > 0,

then there exists ϑ ∈ A t
u1,u2

such that

lim inf
n→∞

∫ 1

0

‖DEt(ϑn(s))‖ ‖ϑ′
n(s)‖ds ≥

∫ 1

0

‖DEt(ϑ(s))‖ ‖ϑ′(s)‖ds. (4.55)

Proof. We will only sketch the proof, dwelling on the differences with the argument for Proposition 4.1.

By the very same arguments developed at the beginning of Prop. 4.1, we conclude that the (images of) all

the curves ϑn in fact lie in some energy sublevel.

The proof of Claim (1) follows the very same lines as for Prop. 4.1.

Ad Claim (2): By definition of A
t,ρ̃
un
1 ,u

n
2
, we have that there exists a partition 0 = τn0 < τn1 < ... < τnMn

= 1

such that ϑn(0) = un
1 , ϑn(1) = un

2 , ϑn|(τn
i ,τn

i+1)
∈ Clip

loc((τ
n
i , τ

n
i+1);X) for all i = 0, . . . ,Mn − 1, and the curves

ϑn|(τn
i ,τn

i+1)
connect different connected components of C(t)∩Sρ̃. In analogy with the proof of Prop. 4.1, we use

the rescaling rn defined as the inverse of the function sn(r) :=
∫ r

0
‖DEt(ϑn(s))‖ ‖ϑ′

n(s)‖ds, for r ∈ [a, b], and set

ϑ̃n(s) := ϑn(rn(s)) for every s ∈
[

ãn, b̃n

]

, where ãn := r−1
n (0) and b̃n := r−1

n (1). Then, there exists a partition

ãn = σn
0 < σn

1 < ... < σn
Mn

= b̃n, with ϑ̃n(ãn) = un
1 , ϑ̃n(b̃n) = un

2 , such that ϑ̃n|(σn
i ,σn

i+1)
∈ Clip

loc((σ
n
i , σ

n
i+1);X)

for all i = 0, . . . ,Mn − 1. Moreover,

‖DEt(ϑ̃n(s))‖ ‖ϑ̃′
n(s)‖ ≤ 1 for a.a. s ∈ (ãn, b̃n),

and
∫ 1

0

‖DEt(ϑn(r))‖ ‖ϑ′
n(r)‖dr =

∫ b̃n

ãn

‖DEt(ϑ̃n(s))‖ ‖ϑ̃′
n(s)‖ds.

We now define for every i = 0, ...,Mn − 1 the sets Ai,δ
n :=

{

s ∈ (σn
i , σ

n
i+1) : ϑ̃n(s) ∈ int(Kδ)

}

, where Kδ is de-

fined as in (4.9), and write Ai,δ
n as the countable union of its connected components, i.e. Ai,δ

n =
⋃∞

k=1(ai,δn,k, b
i,δ
n,k).

Similarly, we consider the analogues of the sets Bδ
n (4.19), viz.

Bi,δ
n :=

⋃

(ai,δ
n,k

,bi,δ
n,k

)∈B
i,δ
n

(ai,δn,k, b
i,δ
n,k) with

B
i,δ
n =

{

(ai,δn,k, b
i,δ
n,k) ⊂ Ai,δ

n : ϑ̃(ai,δn,k) ∈ ∂B(x, δ), ϑ̃(bi,δn,k) ∈ ∂B(y, δ) for x, y ∈ (C(t)∩Sρ) with x 6= y

}

,

(4.56)

for i = 1, ..,Mn − 1. We denote by N(i, n, δ) the cardinality of the set B
i,δ
n . Then, we have

C ≥

∫ 1

0

‖DEt(ϑn(r))‖ ‖ϑ′
n(r)‖dr ≥ eδMn

∑

(ai,δ
n,k

,bi,δ
n,k

)∈B
i,δ
n

m,

where 0 < m := minn∈N minx,y∈(C(t)∩Sρ)∪{u1,u2}

x 6=y

(‖x−y‖−2δ), with δ as in (4.8) and C is as in (4.12). Therefore,

we conclude the estimate

MnN(i, n, δ) ≤
C

eδm
for every 0 < δ ≤ δ, n ∈ N.

Observing that we may suppose Mn, N(i, n, δ) ≥ 1, we conclude a bound for both (Mn)n and ((N(i, n, δ))Mn

i=1)n.

The proof can be then carried out by suitably adapting the argument for Proposition 4.1. �

We are now in the position to develop the
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Proof of Theorem 2.4. Ad (1): Suppose ct(u1;u2) = 0. Then, by definition of ct(u1;u2), there exists a

sequence (ϑn)n ⊂ A t
u1,u2

such that

0 = lim
n→∞

∫ 1

0

‖DEt(ϑn(s))‖ ‖ϑ′
n(s)‖ds.

Then, it follows from Prop. 4.5 (1) that u1 = u2.

Ad (2): consider the nontrivial case u1 6= u2 and a curve ϑ ∈ A t
u1,u2

. Define ζ : [0, 1] → X by ζ(s) :=

ϑ(1 − s). Then ζ ∈ A t
u2,u1

and

ct(u1;u2) ≤

∫ 1

0

‖DEt(ϑ(r))‖‖ϑ′(r)‖dr =

∫ 1

0

‖DEt(ζ(r))‖‖ζ′(r)‖dr .

With this argument we easily conclude that ct(u1;u2) ≤ ct(u2;u1). Interchanging the role of u1 and u2 we

conclude the symmetry of the cost.

Ad (3): We use the direct method of the calculus of variations: let (ϑn)n ⊂ A t
u1,u2

be a minimizing sequence

for ct(u1;u2)(< ∞). Applying Proposition 4.5 (2) to the curves ϑn (in fact, we are in the case u1 6= u2), we

conclude.

Ad (4): We confine the discussion to the case in which ct(u1;u3) > 0 and ct(u3;u2) > 0, as the other cases

can be treated with simpler arguments. Let ϑ1,3 and ϑ3,2 be two optimal curves for ct(u1;u3) and ct(u3;u2),

respectively. Set

ϑ1,2(s) :=

{

ϑ1,3(2s) for s ∈
[

0, 12
]

,

ϑ3,2(2s− 1) for s ∈
(

1
2 , 1

]

.

Since u3 ∈ C(t), it is immediate to check that ϑ1,2 ∈ A t
u1,u2

, and by the definition of ct(u1;u2) we obtain

ct(u1;u2) ≤

∫ 1

0

‖DEt(ϑ1,2(s))‖ ‖ϑ′(s)‖ds = 2

∫ 1/2

0

‖DEt(ϑ1,3(2s))‖ ‖ϑ′
1,3(2s)‖ds

+ 2

∫ 1

1/2

‖DEt(ϑ3,2(2s− 1))‖ ‖ϑ′
3,2(2s− 1)‖ds

= ct(u1;u3) + ct(u3;u2),

and conclude (2.6).

Ad (5): (2.7) is a direct consequence of Proposition 4.1.

Ad (6): We may suppose that u1 6= u2 (otherwise, ct(u1;u2) = 0 and the desired inequality trivially

follows), and that lim infk→∞ ct(u
k
1 ;uk

2) < ∞. By definition of ct(u
k
1 ;uk

2), we have that for every k ≥ 1 there

exists ϑk ∈ A t
uk
1 ,u

k
2

such that

∫ 1

0

‖DEt(ϑk(s))‖‖ϑ′
k(s)‖ds ≤ ct(u

k
1 ;uk

2) +
1

k
.

By Prop. 4.5 (2), there exists ϑ ∈ A t
u1,u2

such that

∫ 1

0

‖DEt(ϑ(s))‖‖ϑ′(s)‖ds ≤ lim inf
k→∞

∫ 1

0

‖DEt(ϑk(s))‖‖ϑ′
k(s)‖ds ≤ lim inf

k→∞
ct(u

k
1 ;uk

2).

This concludes the proof, in view of the definition of ct(u1;u2).
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5. Proof of the main results

5.1. Proof of Theorem 1. Let (uεn)n ⊂ H1(0, T ;X) be a sequence of solutions to the Cauchy problem for

(1.1), supplemented with initial data (u0
εn)n fulfilling (2.12).

In the upcoming result we derive from the energy identity (2.2) for the sequence family (uεn)n, namely
∫ t

s

(

εn
2
‖u′

εn(r)‖2 +
1

2εn
‖DEr(uεn(r))‖2

)

dr + Et(uεn(t)) = Es(uεn(s)) +

∫ t

s

Pr(uεn(r))dr, (5.1)

a series of a priori estimates, which will allow us to prove a preliminary compactness result, Proposition 5.2

below.

Proposition 5.1 (A priori estimates). Assume (E0)–(E2). Then, there exists a constant C > 0 such that for

every n ∈ N the following estimates hold

sup
t∈[0,T ]

G(uεn(t)) + sup
t∈[0,T ]

|Pt(uεn(t))| ≤ C, (5.2)

∫ t

s

(

εn
2
‖u′

εn(r)‖2 +
1

2εn
‖DEr(uεn(r))‖2

)

dr ≤ C for all 0 ≤ s ≤ t ≤ T. (5.3)

Proof. Combining (2.2) with estimate (E2) for the power function P, we find that
∫ t

0

(

εn
2
‖u′

εn(s)‖2 +
1

2εn
‖DEs(uεn(s))‖2

)

ds + Et(uεn(t)) ≤ E0(u0
εn) + C1

∫ t

0

Es(uεn(s))ds + C2T. (5.4)

Now, in view of (2.12) we have supn E0(u0
εn) ≤ C. Hence, with the Gronwall Lemma we conclude that

supt∈[0,T ] G(uεn(t)) ≤ C, which in turn implies (5.2), in view of (E2). Therefore, we also conclude (5.3). �

The ensuing compactness result provides what will reveal to be the defect measure µ (cf. Definition (1))

associated with the limiting curve u that shall be constructed later on. In what follows we will also show that

the limiting energy and power functions E and P, cf. (5.7) and (5.8) below, coincide with the energy and

power evaluated along u.

Proposition 5.2. Assume (E0)–(E2). Consider the sequence of measures

µn :=

(

εn
2
‖u′

εn(·)‖2 +
1

2εn
‖DE(·)(uεn(·))‖2

)

L
1, (5.5)

with L 1 the Lebesgue measure on (0, T ). Then, there exist a positive Radon measure µ ∈ M(0, T ) and functions

E ∈ BV([0, T ]) and P ∈ L∞(0, T ) such that, along a not relabeled subsequence, there hold as n → ∞

µn ⇀∗ µ in M(0, T ), (5.6)

lim
n→∞

Et(uεn(t)) = E (t) for all t ∈ [0, T ], (5.7)

Pt(uεn(t)) ⇀∗
P in L∞(0, T ). (5.8)

Moreover, denoting by E−(t) and E+(t) the left and right limits of E at t ∈ [0, T ], with the convention that

E−(0) := E (0) and E+(T ) := E (T ), we have that

µ([s, t]) + E+(t) = E−(s) +

∫ t

s

P(r)dr for every 0 ≤ s ≤ t ≤ T. (5.9)

Furthermore, denoting by dE the distributional derivative of E , we get from the previous identitities that

E−(t) − E+(t) = µ({t}) for every 0 ≤ t ≤ T ; (5.10)

dE + µ = PL
1 . (5.11)

Finally, let J be the set where the measure µ is atomic. Then

J = {t ∈ [0, T ] : µ({t}) > 0} consists of at most countably infinitely many points. (5.12)
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Proof. It follows from estimate (5.3) in Proposition 5.1 that the measures (µn)n have uniformly bounded

variation, therefore (5.6) follows. As for (5.7), we observe that, by (5.4), the maps t 7→ Fn(t) := Et(uεn(t)) −
∫ t

0
Ps(uεn(s)) ds are nonincreasing on [0, T ]. Therefore, by Helly’s Compactness Theorem there exist F ∈

BV([0, T ]) such that, up to a subsequence, Fn(t) → F (t) for all t ∈ [0, T ]. On the other hand, (5.2) also yields

(5.8), up to a subsequence. Therefore, (5.7) follows with E (t) := F (t) +
∫ t

0
P(s)ds.

To prove identity (5.9), let us first suppose, for simplicity, that 0 < s ≤ t < T . We note on the one hand

that [s, t] =
⋂

m(s − 1/m, t + 1/m). Hence, from the fact that µ([s, t]) = limm→∞ µ
(

(s − 1/m, t + 1/m)
)

and

from convergence (5.6), we get

µ([s, t]) = lim
m→∞

µ
(

(s− 1/m, t + 1/m)
)

≤ lim
m→∞

lim inf
n→∞

µn

(

(s− 1/m, t + 1/m)
)

= lim
m→∞

lim inf
n→∞

µn

(

[s− 1/m, t + 1/m]
)

= lim
m→∞

{

E (s− 1/m) − E (t + 1/m) +

∫ t+1/m

s−1/m

P(r)dr

}

= E−(s) − E+(t). (5.13)

Note that in the last equality we have used the fact that the limits E−(s) and E+(t) always exist, since

E ∈ BV([0, T ]). On the other hand, since the identity [s, t] =
⋂

m[s − 1/m,+1/m] holds as well, we have at

the same time that

µ([s, t]) = lim
m→∞

µ
(

[s− 1/m, t + 1/m]
)

≥ lim
m→∞

lim sup
n→∞

µn

(

[s− 1/m, t + 1/m]
)

= lim
m→∞

{

E (s− 1/m) − E (t + 1/m) +

∫ t+1/m

s−1/m

P(r)dr

}

= E−(s) − E+(t). (5.14)

From inequalities (5.13) and (5.14) we obtain (5.9). With obvious modifications we can handle the cases s = 0

and t = T . Identity (5.11) trivially follows from (5.9).

Finally, let us denote by (dE )jump the jump part of the measure dE : it follows from (5.11) that

supp((dE )jump) = J. (5.15)

Then, (5.12) follows from recalling that E ∈ BV([0, T ]) has countably many jump points. �

Notation 5.3. Hereafter, we will denote by B the set

B = {t ∈ (0, T ) : ‖DEt(uεn(t))‖ → 0 as n → ∞} (5.16)

where (uεn)n is (a suitable subsequence of) the sequence for which convergences (5.6)–(5.8) hold. Due to (5.3),

we have that

lim
n→∞

∫ T

0

‖DEr(uεn(r))‖2 dr = 0,

hence the set B (defined for a suitable subsequence), has full Lebesgue measure.

While the compactness statements in Proposition 5.2 only relied on assumptions (E0)–(E2), for the next

result, which will play a key role in the compactness argument within the proof of Theorem 1, we additionally

need condition (E3) on the critical points of E.

Lemma 5.4. Assume (E0)–(E3). For every t ∈ [0, T ] and for all sequences (tn1 )n, (tn2 )n fulfilling 0 ≤ tn1 ≤

tn2 ≤ T for every n ∈ N and

tn1 → t, tn2 → t, uεn(tn1 ) → u1, uεn(tn2 ) → u2 for some u1, u2 ∈ X, (5.17)

there holds

µ({t}) ≥ ct(u1;u2) . (5.18)

In particular, for every t ∈ [0, T ] \ J we have that u1 = u2.
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Proof. Observe that for every η > 0 there holds

µ([t− η, t + η]) ≥ lim sup
n→∞

µn([tn1 , t
n
2 ])

= lim sup
n→∞

∫ tn2

tn1

(

εn
2
‖u′

εn(s)
‖2 +

1

2εn
‖DEs(uεn(s))‖2

)

ds

≥ lim sup
n→∞

∫ tn2

tn1

‖u′
εn(s)

‖‖DEs(uεn(s))‖ds ≥ ct(u1;u2),

(5.19)

where the first inequality is due to (5.6), the second one to the definition (5.5) of µn, the third one to the

Young inequality, and the last one to (2.7) in Proposition 2.4. Since η > 0 is arbitrary, we conclude (5.18). In

particular, if µ({t}) = 0 then by (1) in Proposition 2.4 we deduce that u1 = u2. �

We are now in the position to perform the proof of Theorem 1: we will split the arguments in several

points.

Ad (2.13): Let us consider the set (cf. Notation 5.3)

I := J ∪ A ∪ {0} with A ⊂ (B\J) dense in [0, T ] and consisting of countably many points. (5.20)

From (5.2) we gather that

∃C > 0 ∀n ∈ N, ∀ t ∈ [0, T ] : uεn(t) ∈ SC , with SC ⋐ X by (E1). (5.21)

Since I has countably many points, with a diagonal procedure it is possible to extract from (uεn)n a (not

relabeled) subsequence such that there exists û : I → X with

uεn(t) → û(t) for all t ∈ I, (5.22)

with û(0) = u0 thanks to the convergence (2.12) of the initial data. Moreover, since A ⊂ B from (5.16), we

also have

û(t) ∈ C(t) for every t ∈ A. (5.23)

We now extend û to a function defined on the whole interval [0, T ], by showing that

∀ t ∈ (0, T ] \ I ũ(t) := lim
k→∞

û(tk) is uniquely defined for every (tk)k ∈ S(t) and fulfills ũ(t) ∈ C(t),

with S(t) =

{

(tk)k ⊂ A : tk → t and ∃ lim
k→∞

û(tk)

} (5.24)

(in the case t = T , the sequence (tk)k is to be understood as tk ↑ t). Observe that S(t) 6= Ø since û(I) is

contained in the compact set K from (5.21), To check (5.24), let (tk1)k, (tk2)k ∈ S(t) be such that

lim
k→∞

û(tk1) =: u1 and lim
k→∞

û(tk2) =: u2.

We want to show that u1 = u2. Note that û(tk1) = limn→∞ uεn(tk1) and û(tk2) = limn→∞ uεn(tk2) for every

k ∈ N, because of (5.22). Since tk1 , tk2 ∈ A ⊂ B for every k ∈ N, there holds DEtk1
(û(tk1)) = DEtk2

(û(tk2)) = 0 for

every k ∈ N. Therefore, we get that u1, u2 ∈ C(t). Furthermore, with a diagonal procedure we can extract a

subsequence (nk)k such that

u1 = lim
k→∞

unk
(tk1) and u2 = lim

k→∞
unk

(tk2).

Therefore, we are in the position to apply Lemma 5.4 to u1 and u2. Since t /∈ J , we have that u1 = u2. This

concludes the proof of (5.24). Therefore, we can define the (candidate) limit function u everywhere on [0, T ]

by setting

u(t) :=

{

û(t) if t ∈ I

ũ(t) if t ∈ (0, T ] \ I.
(5.25)

By construction, u complies with (2.9).



22 VIRGINIA AGOSTINIANI AND RICCARDA ROSSI

We now address the pointwise convergence (2.13): in view of (5.22), we have to show it at t ∈ (0, T ] \ I. We

will prove that at any such point t, any subsequence of (uεn(t))n admits a further subsequence converging to

u(t). Let us fix a (not relabeled) subsequence (uεn(t))n and consider a sequence (tk)k ⊂ A such that tk ↑ t and

u(t) = ũ(t) = limk→∞ û(tk). With a diagonal procedure as in the above lines, we find a subsequence (εnk
)k

such that

u(t) = lim
k→∞

uεnk
(tk),

whereas, again using that uεnk
([0, T ]) ⊂ SC for every k ∈ N, we extract a further (not relabeled) subsequence

from (uεnk
(t))k, such that

uεnk
(t) → ũ for some ũ ∈ X.

Since t /∈ J , an application of Lemma 5.4 with tk, t, uεnk
, u(t), and ũ in place of tn1 , tn2 , uεn , u1, and u2,

respectively, gives that ũ = u(t). Therefore, convergence (2.13) holds at t ∈ (0, T ] \ J , and at t ∈ J due to

(5.22) and definition (5.25).

Ad (2.14): Since the sequence (uεn)n is bounded in L∞(0, T ;X) by (5.21), (2.14) follows from (2.13).

It now remains to verify that u ∈ B([0, T ];X) complies with the properties (2.8)—-(2.10) defining the notion

of Dissipative Viscosity solution.

Ad (2.8): To prove (2.8), we first need to prove that the left and the right limits of u always exist. We now

show that for every 0 ≤ t < T the right limit u+(t) exists. The same argument can be trivially adapted to

prove the existence of the left limit u−(s) for every s ∈ (0, T ]. Consider (tk1)k, (tk2)k ⊂ [0, T ] such that tk1 ↓ t,

tk2 ↓ t, and the limits

lim
k→∞

u(tk1) =: u1 lim
k→∞

u(tk2) =: u2 (5.26)

exist. Note that, up to subsequences, we have that either tk1 ≤ tk2 or tk2 ≤ tk1 for every k ∈ N. Suppose for

simplicity that we are in the first case. Observe that from (E0) and from (5.7), we have that Et(u(t)) = E (t)

for every t ∈ [0, T ], due to convergence (2.13). In particular, since E ∈ BV([0, T ]), there exist

lim
k→∞

Etk1
(u(tk1)) = lim

k→∞
Etk2

(u(tk2)) = E+(t). (5.27)

Now, (5.7) gives that Etki
(u(tki )) = limn→∞ Etki

(uεn(tki )) for every k ∈ N and for i = 1, 2. Hence, there exists

(εnk
)k such that

∣

∣

∣
Etk1

(uεnk
(tk1)) − Etk1

(u(tk1))
∣

∣

∣
≤

1

k
,

∣

∣

∣
Etk2

(uεnk
(tk2)) − Etk2

(u(tk2))
∣

∣

∣
≤

1

k

for every k ∈ N, so that

lim
k→∞

Etk1
(uεnk

(tk1)) = lim
k→∞

Etk1
(u(tk1)), lim

k→∞
Etk2

(uεnk
(tk2)) = lim

k→∞
Etk2

(u(tk2)) . (5.28)

Arguing as previously done, we can also suppose that, up to a subsequence,

u1 = lim
k→∞

uεnk
(tk1), u2 = lim

k→∞
uεnk

(tk2). (5.29)

Now, recalling definition (5.5) of µn, the energy identity (2.2) with tk1 , tk2 , uεnk
in place of s, t, and uε,

respectively, gives

Etk1
(uεnk

(tk1)) − Etk2
(uεnk

(tk2)) +

∫ tk2

tk1

Pr(uεnk
(r))dr = µnk

([tk1 , t
k
2 ]).

This equality, together with (5.28), (5.29), and with (2.7) in Theorem 2.4, implies that

0 = lim
k→∞

Etk1
(u(tk1)) − lim

k→∞
Etk2

(u(tk2)) ≥ lim inf
k→∞

µεnk
([tk1 , t

k
2 ]) ≥ ct(u1;u2) (5.30)

(note that we have also used (5.8) and (5.27)). Hence, we have obtained that ct(u1;u2) = 0 and in turn that

u1 = u2, in view of Proposition 2.4 (1), whence we conclude that the right limit u+(t) exists.



SINGULARLY PERTURBED GRADIENT FLOWS 23

Combining (2.13) with (5.7), and taking into account that E ∈ C1([0, T ] ×X), we gather that

E+(t) = Et(u+(t)) for all 0 ≤ t < T, E−(s) = Es(u−(s)) for all 0 < s ≤ T,

and

Pt(uεn(t)) → Pt(u(t)) for all t ∈ [0, T ].

In view of (5.2) and the Lebesgue theorem, we then have Pt(uεn(t)) → Pt(u(t)) in Lp(0, T ) for every 1 ≤ p < ∞.

Therefore,

P(t) = Pt(u(t)) for a.a. t ∈ (0, T ),

and the energy balance (2.8) follows from (5.9).

Ad (2.10a): To prove that u+(t) ∈ C(t) for every t ∈ [0, T ) (the argument for u−(t), with t ∈ (0, T ], is perfectly

analogous), it is sufficient to observe that there always exists tk ↓ t such that (tk)k ⊂ (0, T ] \ J , so that in

particular

u+(t) = lim
k→∞

u(tk),

and u(tk) ∈ C(tk) for every k ∈ N. Therefore, by this limit and by (E0), u+(t) ∈ C(t).

Ad (2.10b)&(2.10c): preliminarily, we show that

Et(u−(t)) − Et(u+(t)) ≥ ct(u−(t);u+(t)) for every t ∈ (0, T ) (5.31)

(suitable analogues hold at the points t = 0 and t = T ). Indeed, fix tk1 ↑ t and tk2 ↓ t, so that (cf. (5.26))

u1 = limk→∞ u(tk1) = u−(t) and u2 = limk→∞ u(tk2) = u+(t). The very same arguments leading to (5.30) show

that

lim
k→∞

Etk1
(u(tk1)) − lim

k→∞
Etk2

(u(tk2)) ≥ lim inf
k→∞

µεnk
([tk1 , t

k
2 ]) ≥ ct(u1;u2) .

Then, (5.31) ensues. On account of identity (5.10), we deduce

µ({t}) ≥ ct(u−(t);u+(t)) for every t ∈ [0, T ] . (5.32)

In particular, if t /∈ J , we have ct(u−(t);u+(t)) = 0, hence u−(t) = u+(t). Thus, we have proved the one-sided

inclusion ⊃ in (2.10b).

Let us now prove the converse of inequality (5.31), namely

Et(u−(t)) − Et(u+(t)) ≤ ct(u−(t);u+(t)).

We may confine the discussion to the case t ∈ J for, otherwise, we have u−(t) = u+(t) and the above inequality

trivially holds. Let ϑ ∈ A t
u−(t),u+(t) be a minimizing curve for the cost ct(u−(t);u+(t)): its existence is

guaranteed by Theorem 2.4 (3). Then, by the chain rule

ct(u−(t);u+(t)) =

∫ 1

0

‖DEt(ϑ(s))‖‖ϑ′(s)‖ds

≥ − (Et(ϑ(1)) − Et(ϑ(0))) = Et(u−(t)) − Et(u+(t)).

(5.33)

All in all, again taking into account (5.10), we have proved that

ct(u−(t);u+(t)) = µ({t}) = Et(u−(t)) − Et(u+(t)) for all t ∈ [0, T ],

whence (2.10b)&(2.10c) also in view of Thm. 2.4(1).

This concludes the proof of Theorem 1.
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5.2. Proof of Theorem 2. Let us denote by µAC, µJ, and µCA, the absolutely continuous, jump, and Cantor

parts of the defect measure µ. Recall that µJ([s, t]) =
∑

r∈J∩[s,t] cr(u−(r);u+(r)) in view of (2.10c). It follows

from (2.8) that, for every 0 ≤ t ≤ T ,

µJ([0, t]) + Et(u+(t)) ≤ µAC([0, t]) + µJ([0, t]) + µCA([0, t]) + Et(u+(t)) = E0(u(0)) +

∫ t

0

Pr(u(r))dr .

We will now show that

µJ([0, t]) + Et(u+(t)) ≥ E0(u(0)) +

∫ t

0

Pr(u(r))dr for every 0 ≤ t ≤ T, (5.34)

and therefore conclude that µAC([0, t]) = µCA([0, t]) = 0 at every t ∈ [0, T ], whence the thesis.

We will deduce (5.34) by applying the following result, which is a variant of [21, Lemma 6.2].

Lemma 5.5. Let g : [a, b] → R be a strictly increasing function, and f : [a, b] → R be right continuous and

such that its restriction to the set [a, b] \ Jg is lower semicontinuous. Suppose that

lim inf
r↑t

f(r) − f(t) ≥ g−(t) − g+(t) for all t ∈ Jg, (5.35)

lim sup
s↓t

f(t) − f(s)

g+(s) − g+(t)
≥ −1 for all t ∈ [a, b] . (5.36)

Then, the map f − g is non-increasing on [a, b].

In fact, [21, Lemma 6.2] has the same thesis as the result above, but ‘specular’ conditions on f and g, involving

left continuity of f , the lim sup from the right, in place of the lim inf from the left, in (5.35), and analogously

for (5.36), etc. For our purposes, though, it is more convenient to apply the present version of the result. Its

proof can be deduced from that of [21, Lemma 6.2] by observing that, for f − g to be non-increasing on [a, b],

it is sufficient to have

f(b)− g(b) ≤ f(a)− g(a) ⇔ f#(a)− g#(a) ≤ f#(b)− g#(b) with f#(t) := f(b+ a− t), g#(t) := g(b+ a− t) .

Therefore, we are led to prove that the function f# − g# is non-decreasing, which follows from applying [21,

Lemma 6.2] to the functions −f# and −g#. Rewriting the conditions on −f# and −g# from [21, Lemma 6.2]

in terms of the original functions f and g, one obtains the statement of Lemma 5.5.

We are now in the position to conclude the proof of Theorem 2. Mimicking the argument from the proof

of [21, Thm. 6.5], in order to conclude the lower energy estimate (5.34) we shall apply Lemma 5.5 to the

functions f, g : [0, T ] → R defined by

f(t) :=

∫ t

0

Pr(u(r))dr − Et(u+(t)) and g(t) :=
∑

r∈J∩[0,t]

cr(u−(r);u+(r)) + ηt (5.37)

with η > 0 arbitrary, so that g is strictly increasing. By construction f is right continuous. Since u is continuous

on [0, T ] \Jg, and since E ∈ C1([0, T ]×X), we deduce that f is even continuous on [0, T ] \Jg. To check (5.35),

we observe that

lim inf
r↑t

f(r) − f(t) = lim
r↑t

∫ r

t

Pτ (u(τ))dτ + lim inf
r↑t

Et(u+(t)) − Er(u+(r))

= Et(u+(t)) − Et(u−(t)) = −ct(u−(t);u+(t)) = g−(t) − g+(t) .

Note that in the last equality we have used the fact that

g+(t) − g−(t) = lim
τ↓t

lim
s↑t

∑

r∈J∩[s,τ ]

cr(u−(r);u+(r)) = ct(u−(t);u+(t)).
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Finally, in order to verify (5.36), we preliminarily calculate

f(t) − f(s) =

∫ t

s

Pr(u(r))dr + Es(u+(s)) − Et(u+(t))

=

∫ t

s

(Pr(u(r))−Pr(u+(s))) dr + Et(u+(s)) − Et(u+(t))
.
= I1 + I2 .

Observing that

g+(s) − g+(t) ≥ η(s− t), (5.38)

we find that
∣

∣

∣

∣

I1
g+(s) − g+(t)

∣

∣

∣

∣

=
|I1|

g+(s) − g+(t)
≤

1

η
sup

r∈[s,t]

|Pr(u(r))−Pr(u+(s))| → 0 as s ↓ t ,

due to the continuity of the map (t, u) 7→ Pt(u). Therefore,

lim sup
s↓t

f(t) − f(s)

g+(s) − g+(t)
= lim sup

s↓t

Et(u+(s)) − Et(u+(t))

g+(s) − g+(t)
= lim sup

s↓t

Et(u+(s)) − Et(u+(t))

‖DEt(u+(s))‖

‖DEt(u+(s))‖

g+(s) − g+(t)
≥ 0 ,

which follows from condition (E4), and from the fact that ‖DEt(u+(s))‖
g+(s)−g+(t) ≥ 0 for all s ≥ t since g+ is strictly

increasing.

All in all, (5.34) ensues from writing f(t)− g(t) ≤ f(0)− g(0) with f and g from (5.37), and letting η ↓ 0.

6. Examples and applications

In this section, we discuss two classes of conditions which guarantee the validity for Et(·), t ∈ [0, T ], of

hypothesis (E3) on the set of its critical points, and of the  Lojasiewicz inequality (2.15), respectively.

We start by introducing the transversality conditions, concerning the properties of the energy E at points

(t, u) where u is a degenerate critical point, i.e. on the set

S :=
{

(t, u) ∈ [0, T ] ×X : u ∈ C(t) and D2
Et(u) is non-invertible

}

(6.1)

Definition 6.1. We say that the functional E satisfies the transversality conditions if each point (t0, u0) ∈ S

fulfills

(T1) dim(N(D2Et0(u0))) = 1;

(T2) If 0 6= v ∈ N(D2Et0(u0)) then 〈∂tDEt0 (u0), v〉 6= 0;

(T3) If 0 6= v ∈ N(D2Et0(u0)) then D3Et0(u0)[v, v, v] 6= 0,

where N(D2Et0 (u0)) denotes the kernel of the mapping D2Et0(u0).

Under the transversality conditions we have the following result, proved in [2, Corollary 3.6], ensuring that

the critical set C(t) is discrete at every t ∈ [0, T ].

Proposition 6.2 ([2]). Let E ∈ C3([0, T ] × X) comply with the transversality conditions. Then, for every

t ∈ [0, T ], the set C(t) consists of isolated points. Hence, (E3) holds.

With the following genericity result, proved in [2, Theorem 1.3. and Corollary 3.7], we see that suitable

second-order perturbations of an arbitrary energy functional lead to an energy fulfilling the transversality

conditions. In order to state it, we need to introduce the set Sym(X) of the symmetric bilinear forms on

X ×X . Moreover, for a further technical reason that we do not detail here, in the following theorem we have

to require E ∈ C4([0, T ] ×X).
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Theorem 6.3 ([2]). Let E be in C4([0, T ]×X). Then, every open neighborhood U of the origin in X×Sym(X)

contains a set Ur of full Lebesgue measure such that, for every (y,K ) ∈ Ur, the functionals

(t, u) 7−→ Et(u) + 〈y, u〉 +
1

2
K (u, u) (6.2)

satisfy the transversality conditions.

Let us mention that in [2] a similar result (cf. [2, Cor. 3.7]) is proved in a more general, infinite-dimensional

setting, with perturbations of the same form as (6.2), fulfilling an infinite-dimensional version of the transver-

sality conditions. Such perturbations are constructed by means of elements (y,K ) ∈ (X×Sym(X))\N , where

N is in general only a meagre subset of X × Sym(X). In the present finite-dimensional context, N meagre

improves to an N with zero Lebesgue measure, due to the classical Sard’s Theorem.

Concerning the  Lojasiewicz inequality, we are now going to point out its connections with the concept of

subanaliticity. For the reader’s convenience, let us first recall the definition of subanalytic function, referring

to [6, 9, 15] for all details, and to the recent [7] for the proof of the result that will be used in what follows.

Definition 6.4. (1) A subset A ⊂ R
d is called semianalytic if for every x ∈ R

d there exists a neighborhood

V such that

A ∩ V = ∪p
i=1 ∩

q
j=1 {x ∈ V : fij(x) = 0, gij(x) > 0}, (6.3)

where for every 1 ≤ i ≤ p and 1 ≤ j ≤ q the functions fij , gij : V → R are analytic.

(2) We call a set A ⊂ R
d subanalytic if every x ∈ R

d admits a neighborhood V such that there exists

B ⊂ R
d × R

m, for some m ≥ 1, with

A ∩ V = π1(B) and B is a bounded semianalytic subset of Rd × R
m, (6.4)

π1 : Rd × R
m → R

d denoting the projection on the first component.

(3) We say that a function E : R
d → (−∞,+∞] is subanalytic if its graph is a subanalytic subset of

R
d × R.

As the above definition shows, the concept of subanalytic function has a clear geometric character. With-

out entering into details, let us recall that a fundamental example of subanalytic sets (hence of subanalytic

functions) is provided by semialgebraic sets, i.e. sets A ⊂ R
d of the form

A = ∪p
i=1 ∩

q
j=1 {x ∈ V : fij(x) = 0, gij(x) > 0} with fij , gij : Rd → R polynomial functions (6.5)

for all 1 ≤ i ≤ p and 1 ≤ j ≤ q.

We now consider for the functional E the condition

for every t ∈ [0, T ] the functional u 7→ Et(u) is subanalytic. (6.6)

To fix ideas, we may think of the case in which Et(u) = E(u)−〈ℓ(t), u〉, with ℓ ∈ C1([0, T ];X) and E : X → R

of class C1 and subanalytic. Thanks to [7, Thm. 3.1], for every t ∈ [0, T ], Et(·) complies with the  Lojasiewicz

inequality (2.15). All in all, also in view of this result, we can state the following theorem.

Theorem 6.5. In the setting of (E0)–(E2), assume in addition the subanalyticity (6.6), and that E ∈ C3([0, T ]×

X) fulfills the transversality conditions. Consider a sequence (u0
εn)n of initial data for (1.1) such that

u0
εn → u0 as n → ∞.

Then there exist a (not relabeled) subsequence and a curve u ∈ B([0, T ];X) such that convergences (2.13)–(2.14)

hold, u(0) = u0, and u is a Balanced Viscosity solution to (1.2).

This result is a consequence of the fact that, thanks to Proposition 6.2, all the hypotheses of Theorem 1

are in force, and therefore the statement holds true with u being a Dissipative Viscosity solution to (1.2).

Moreover, due to the  Lojasiewicz inequality (2.15), which is implied by (6.6), the Dissipative Viscosity solution

u improves to a Balanced Viscosity solution in view of Theorem 2 (cf. also Remark 2.5).
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[4] L. Ambrosio, N. Gigli, and G. Savaré: Gradient flows in metric spaces and in the space of probability measures. Second

edition. Lectures in Mathematics ETH Zrich, Birkhäuser Verlag, Basel, 2008.
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