Camera calibration is a necessary preliminary step in computer vision for the estimation of the position of objects in the 3D world. Despite the intrinsic camera parameters can be easily computed offline, extrinsic parameters need to be computed each time a camera changes its position, thus not allowing for fast and dynamic network re-configuration. In this paper we present an unsupervised and automatic framework for the estimation of the extrinsic parameters of a camera network, which leverages on optimised 3D human mesh recovery from a single image, and which does not require the use of additional markers. We show how it is possible to retrieve the real-world position of the cameras in the network together with the floor plane, exploiting regular RGB images and with a weak prior knowledge of the internal parameters. Our framework can also work with a single camera and in real-time, allowing the user to add, re-position, or remove cameras from the network in a dynamic fashion.

Fast automatic camera network calibration through human mesh recovery / Garau, N.; De Natale, F. G. B.; Conci, N.. - In: JOURNAL OF REAL-TIME IMAGE PROCESSING. - ISSN 1861-8200. - 17:6(2020), pp. 1757-1768. [10.1007/s11554-020-01002-w]

Fast automatic camera network calibration through human mesh recovery

Garau N.;De Natale F. G. B.;Conci N.
2020-01-01

Abstract

Camera calibration is a necessary preliminary step in computer vision for the estimation of the position of objects in the 3D world. Despite the intrinsic camera parameters can be easily computed offline, extrinsic parameters need to be computed each time a camera changes its position, thus not allowing for fast and dynamic network re-configuration. In this paper we present an unsupervised and automatic framework for the estimation of the extrinsic parameters of a camera network, which leverages on optimised 3D human mesh recovery from a single image, and which does not require the use of additional markers. We show how it is possible to retrieve the real-world position of the cameras in the network together with the floor plane, exploiting regular RGB images and with a weak prior knowledge of the internal parameters. Our framework can also work with a single camera and in real-time, allowing the user to add, re-position, or remove cameras from the network in a dynamic fashion.
2020
6
Garau, N.; De Natale, F. G. B.; Conci, N.
Fast automatic camera network calibration through human mesh recovery / Garau, N.; De Natale, F. G. B.; Conci, N.. - In: JOURNAL OF REAL-TIME IMAGE PROCESSING. - ISSN 1861-8200. - 17:6(2020), pp. 1757-1768. [10.1007/s11554-020-01002-w]
File in questo prodotto:
File Dimensione Formato  
Garau2020_Article_FastAutomaticCameraNetworkCali.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 2.14 MB
Formato Adobe PDF
2.14 MB Adobe PDF Visualizza/Apri
_Journal__RTIP (2) (1).pdf

accesso aperto

Descrizione: first online
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/278271
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
  • OpenAlex ND
social impact