
Journal of Real-Time Image Processing manuscript No.
(will be inserted by the editor)

Fast automatic camera network calibration through human

mesh recovery

Nicola Garau · Francesco G.B. De Natale · Nicola Conci

Received: date / Accepted: date

Abstract Camera calibration is a necessary prelimi-

nary step in computer vision for the estimation of the

position of objects in the 3D world. Despite the intrin-

sic camera parameters can be easily computed offline,

extrinsic parameters need to be computed each time a

camera changes its position, thus not allowing for fast

and dynamic network re-configuration. In this paper we

present an unsupervised and automatic framework for
the estimation of the extrinsic parameters of a cam-

era network, which leverages on optimised 3D human

mesh recovery from a single image, and which does not

require the use of additional markers. We show how

it is possible to retrieve the real-world position of the

cameras in the network together with the floor plane,

exploiting regular RGB images and with a weak prior

knowledge of the internal parameters. Our framework

can also work with a single camera and in real-time, al-
lowing the user to add, re-position, or remove cameras

from the network in a dynamic fashion.

Keywords camera calibration · pose estimation ·
human mesh recovery · 3D matching

1 Introduction

In computer vision and 3D reconstruction, many works

over the years have tried to automate the process of
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camera resectioning and calibration. Having the possi-

bility to minimise the manual intervention within the

calibration pipeline could simplify its deployment in

many contexts and in a significant way. However, there

is still a lack for fully unsupervised and markerless ap-

proaches for camera calibration in literature. The man-

ifoldness of camera sensors and lenses present in the
market hinders any generalization attempt. Another

aspect that plays an important role in increasing the

difficulty of automatic calibration is the dynamic na-

ture of the environments, in which camera networks

are generally being installed. For example, in many sce-

narios, including video surveillance, Ambient Assisted

Living (AAL) and environmental monitoring, the re-

configuration and consequent re-calibration of the cam-

era network is a common process, often due to the re-
positioning or addition of pieces of furniture, or, more in

general, the presence of obstacles that can partially or

fully limit the visibility of the observed environment.

In addition, cameras with pan-tilt-zoom (PTZ) capa-

bilities are often used. A big issue linked to the usage

of PTZ cameras is that they are capable of changing

their internal configuration, making it necessary to re-

calibrate the whole network whenever these changes oc-

cur. In addition, wind or other weather conditions may

also further complicate the scenario, introducing noise,

and making it difficult to accomplish even the simplest

vision tasks, such as keypoints extraction, motion de-

tection and tracking.

Generally speaking, the internal configuration of a

camera usually remains fixed, unless when zooming, re-

focusing or changing the lens parameters. Many good

solutions to estimate the intrinsic parameters of a cam-

era have been provided in the literature, and they usu-

ally require the usage of a checkerboard or other cali-

bration tools.
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On the other hand, extrinsic parameters model the

relation between the camera coordinates and the real-

world coordinates. Ideally, extrinsic parameters remain

unaltered if both the camera and world long-term steadi-

ness can be guaranteed. For this reason, even a slight

movement of the camera can cause a loss in calibra-

tion precision, leading to the need of re-calibrating the

whole system. This is problematic because the stan-

dard calibration procedures, though not complex, are

rather time consuming and require the usage of third

party calibration instruments by an expert technician

who needs to be on the spot to perform the task. An-

other issue is that whenever a calibration is in progress,
the camera network remains busy and inoperable.

A few approaches in literature [8] try to simplify the

calibration process by increasing the accuracy of the

calibration pattern detectors, thus reducing the num-

ber of required checkerboard images. However, despite

being fast, they still require manual intervention. For

example, although in a different application scenarios,

the adoption of markerless solutions has been explored

in the autonomous driving context, exploiting visual

odometry [21], SLAM [6], and optical flow [19] for fea-

ture tracking; however, they are often not suitable for

surveillance scenes, since such methods require a fixed
camera configuration with respect to the vehicle, in or-

der to exploit the car movement information for calibra-

tion. Other methods use SIFT/SURF feature matching

between camera views to estimate the extrinsic cam-

era parameters [11], but they usually require additional

data from other sensors, such as active range sensors.

A recent trend in computer vision is pedestrian-

based camera calibration, which focuses on finding how

to estimate both intrinsic and extrinsic camera parame-

ters by exploiting the cues provided by walking humans.

In particular, these approaches are usually based on:

– Manhattan World Assumption
– Planar trajectories

– Skeleton data from 3D sensors

The approaches based on the Manhattan World As-

sumption [4] are usually adopted in city-like environ-

ments due to their geometric homogeneity, but may fail

in other scenarios, when no such geometric cues are be-

ing found. Human detection and tracking have been

explored in literature as a support for vanishing point

estimation and to estimate the ground plane from mul-

tiple camera views [30]. However, these methods often

require a prior knowledge of the cameras’ vertical po-

sition or of the people height, they are not robust to
occlusions, noise, and can be fooled by unconventional

human poses. Recently, RGBD sensors such as the Mi-

crosoft Kinect V21 and the Intel RealSense2 allowed

obtaining a better understanding of the scene through

depth and 3D skeleton pose estimation [26][27][23]. How-

ever, there are many issues linked to the usage of RGBD

sensors such as Kinect and RealSense to calibrate a

camera network from the skeleton information. Among

them, the most relevant ones are:

– Small range (usually 4m) of the depth sensor; this

constraint is not suitable for large environments.

– Low precision; occlusions, ambiguities and reflec-

tions in the scene are an important factor for the

skeleton extraction precision.

– High infrastructural and processing cost; multiple

computers and GPUs are usually required to process

data coming from a network of RGBD sensors in

real-time.

A recent trend in computer vision concerns the area

of human pose estimation from monocular images. There

have been many successful examples, such as [24], [33]
and [2]. Many of the good results have been made pos-

sible thanks to the availability of very large datasets,

in particular CMU’s Panoptic Studio [12], which con-

tributed to speed up the development of many popular

and open source frameworks, such as OpenPose [3].

Amongst the different kinds of 3D monocular hu-

man pose estimation techniques used in literature, we

can distinguish between:

– two-stage approaches

– end-to-end approaches

Two-stage approaches, such as [31], first estimate 2D
joints and then recover the depth component. On the

other hand, end-to-end approaches try to recover the

3D skeleton or mesh in one shot. Kanazawa et al.’s

work [13] is one of the most recent ones, which takes

as input an image, encoding it into body pose, shape

and weak camera pose via a CNN encoder; then, a dis-

criminator is used as supervisor to encourage a better

loss, by comparing the produced 3D model with a pool

of real scanned 3D human poses (Fig. 2). Despite it be-

ing a very good approach to estimate the 3D mesh of

a person, it may still fail, especially when dealing with

unusual viewpoints and in time-constrained scenarios.

Kolotouros et al. in SPIN (SMPL oPtimization IN the

loop) [16] provide a fix to these issues by employing an

hybrid top-down and bottom-up approach that aims

at optimising the human mesh recovery (HMR) phase.

1 https://developer.microsoft.com/en-us/windows/kinect
2 https://www.intel.com/content/www/us/en/architecture-

and-technology/realsense-overview.html
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Fig. 1 An overview of our camera network calibration pipeline. In the figure, SNWBP refers to a Single-Network Whole-Body
Pose Estimation, the filters prepare the inputs for the SPIN human mesh recovery module. The matcher simply matches the
obtained 3D skeletons in order to compute the output poses.

Their method is based on the iterative application of

optimisation and regression-based approaches (such as

[13]) to further improve human mesh recovery, by mix-

ing the advantages of both the approaches, in particular

the accuracy of the first one with the speed of the sec-

ond one.

Starting from Kanazawa’s work, we extend it in a

similar fashion as the one described in [16], and re-

purpose in order to work with multiple views and with

a more realistic camera model, that allows us to bet-

ter estimate the extrinsic parameters for each camera.

Our results show that, starting from a single frame,

the retrieved human skeleton alone can provide a suf-

ficient number of keypoints to estimate the real-world

3D position of cameras in a network, thus achieving

fully unsupervised camera calibration. We show results

in different scenarios and with different cameras config-

urations and discuss on how our method can be further

extended for better accuracy. This work is an extension

of our previous work [7]. The main contribution, com-

pared to the work in [7] consists of the capability of

the system to obtain real-time camera network calibra-

tion, at comparable accuracy. This is achieved thanks

to the adoption of a faster SNWBP network [9] and a

more precise human mesh recovery pipeline [16]. These

improvements allow for an even easier deployment in

real-world scenarios, and are particularly helpful when

dealing with large camera networks and real-time con-

straints.

2 Related work

2.1 Human Pose Estimation (HPE)

Before the advent of deep learning, classical HPE ap-

proaches were based on the so-called pictorial struc-

tures framework [1]. Later on, this kind of hand-crafted

features, as well as customised hardware solutions (e.g.,

RGBD-based sensors) became less popular, making room

for HPE algorithms based on deep learning paradigms.

Many human pose estimation techniques [33,2] are based

on bottom-up 2D skeleton estimation to guarantee good

performances. Recent contributions [31] explore two-

stage approaches, in which the 2D pose is first estimated

and then used as a baseline to infer the corresponding

3D pose.

2.1.1 Bottom-up approaches

Estimating the human pose in a bottom-up fashion

means first estimating all the joints in a frame and

then linking them together in a meaningful, structured

hierarchy. Cao et al.’s Realtime multi-person 2D pose

estimation using part affinity fields [2] is one of the

most popular multi-person real-time 2D pose estima-

tion works in literature. It combines the architecture of

a CNN-based variation of Pose Machines, called Convo-
lutional Pose Machines [33], leveraging on part affinity

fields. Part affinity fields can be defined as a group of

oriented vectors linking different joints. In other words,

part affinity fields can be seen as confidence maps iden-

tifying bones, while joint confidence maps identify joints

and articulations.

The solution, presented in [2], is very robust to large

scale occlusions and self occlusions. Its dual-branch ar-

chitecture for CNN-based joint parts and pairs esti-

mation is optimised to run in real-time on consumer

hardware, making it suitable for many research appli-

cations, and known as OpenPose [3]. However, it is still

not faster than many top-down approaches when deal-

ing with low density scenarios. Recently, it has been

extended with a single track architecture [9], rendering

it much faster than before, also embedding the hand

and face joint information.
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2.1.2 End-to-end solutions for 3D human pose

estimation

End-to-end recovery of human shape and pose[13] is one

of the most popular works in joint 3D human shape and

pose. From a single RGB image of a person, the human

pose θ and body shape β are regressed, together with

camera scale s, rotation R and translation T .
An issue with this approach is that it is not suitable

for run-time application and it is highly affected by

viewpoint changes and flickering between frames, due

to the lack of temporal coherence. Other works (see

[16][14][22]) inspired by [13] try to solve the flickering

issue by using temporal cues or predicting future poses.

2.2 Automatic calibration

Most of the automatic extrinsic calibration works in

literature leverage on the so called Manhattan World

Assumption [4], which assumes that the geometry typ-

ical of urban areas makes it easier to discover vanish-

ing points from images taken in those kind of environ-

ments. As an example, Zhang et al. in [34] propose a

solution that exploits the geometry of solar panels to

estimate orthogonal vanishing points. While such as-
sumption is valid and works well in city scenarios, it

does not generalize sufficiently, especially when indoor

scenes are taken into consideration. Many methods in

literature deal with the problem of finding the parame-

ters of a single camera which is being plugged in to an

existing and already calibrated camera network. Vas-

concelos et al. in [32] exploit sets of pairwise correspon-

dences among images in order to estimate the pose of

the new camera. Despite the high deployability, this

method only works when the extrinsic parameters of

the other cameras are known. In literature, methods for

self-calibration of pan-tilt [15] and tilt-zoom [25] cam-

eras can also be found. Traditionally, such kind of self

calibration problems are handled using geometrical con-

straints; however, with the growing popularity of deep

learning, some approaches tried to solve the problem,

as in Hold-Geoffroy et al.’s work [10], which aims at es-

timating pitch, roll and focal length of a single camera

employing convolutional neural networks. Of particular

interest from this viewpoint, some very recent works fo-

cus on embedding CNN capabilities directly into cam-

era sensors. One of the first works to achieve such re-

sults is Bose et al.’s A Camera That CNNs: Towards

Embedded Neural Networks on Pixel Processor Arrays,

an interesting proposal that could open new possibil-

ities for in-camera self-calibration. With the growing

popularity of omnidirectional cameras, Miyata et al. in

Fig. 2 Joint pose, shape and camera estimation of End-to-
end recovery of human shape and pose [13] pipeline.

[20] show how to exploit their large field of view to an-

chor non-overlapping views. However, such solution are

not employable in some scenarios, such as AAL, since

occlusions may play an important role for the failure of

the keypoints detectors. Augmented reality (AR) also

played an important role for refreshing the field of cam-

era calibration. Zhao et al. in [36] employ augmented re-

ality markers placed directly on top of cameras in order

to perform camera calibration. However, the method re-

quires the usage of an additional dedicated camera just

for the recognition of the AR markers.

Perhaps the most popular approaches for automatic

camera calibration are the ones employing vanishing

points estimation. Tang et al. in ESTHER [30] pro-

pose a complete pedestrian trajectory-based solution

for joint intrinsic and extrinsic parameters estimation,

especially focusing on intrinsic calibration for distortion

correction. However, their method requires pedestrian

to walk in a standard upright position, as well as a prior

knowledge of the cameras vertical height.

To our best knowledge, few other works exploit human

pose cues for camera calibration, and most of them ex-

ploit 3D sensors data, such as depth maps or cameras

disparity information.

Desai et al. in [5] propose a skeleton-based method

for semi-automatic continuous calibration of Kinect V2

sensors. In their work, they also explore some issues re-
lated to working with depth sensors, such as low range

of vision, skeleton flipping and high computational costs.

Among the many recent 3D human pose estimation

works, some also try to jointly retrieve human pose and

weak camera parameters. Kanazawa et al.’s approach

[13] provides an estimation of the subject in terms of

mesh, shape and pose representation, as well as some

shallow cues of the camera pose.

3 Method overview

In this section, we refer to Fig. 3 to provide a red

thread to explain our method’s pipeline. During phase

A, for each camera Ci in the network we acquire a sin-

gle frame in a synchronous fashion. Then, each frame
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is forwarded to a Single-Network Whole-Body Pose Es-

timation (SNWBP) [9] network (phase B), which is a

very fast convolutional network that is able to infer the

2D skeleton (σ) of multiple people inside the image in

real-time. In this phase we also use the 2D skeleton in-

formation to compute a 2D bounding box Bi for each

detected person in each frame. Then, during phase C,

we use our joint human mesh recovery and camera pose

estimation network, which is based on [16]. Starting

from the monocular human mesh recovery network de-

scribed in [16], we extend it by modifying the underly-

ing camera model, providing a full perspective camera

model. This addition, makes it possible, during phase
D, to exploit the information acquired in the previous

steps, such as the bounding boxes, 2D and 3D skele-

tons, body shape and pose parameters, to retrieve a

good estimation of the camera pose for each camera in

the network. All the four phases can run in parallel for

each camera in the system, and in a continuous loop, in

order to maximise both performance and precision by

refining the calibration results over time.

4 The proposed model

In this section, we propose our one-shot method for fully

automatic and unsupervised camera network calibra-
tion that leverages on monocular 3D human pose esti-

mation from single images. In Figs. 3 and 1 we describe

the pipeline and the different steps of our architecture.

Looking at the bigger picture, our framework receives

as input a single RGB frame I0,...,n from n >= 1 cam-

era video streams C0,...,n. We then apply fast, single

network 2D pose estimation [9] for each frame, in or-

der to filter matching subjects across frames and obtain

the corresponding bounding boxes B0,...,n (Fig. 4). We

then apply our custom optimised human mesh recov-

ery method based on [13][16] to infer the 3D position

of skeletal joints together with their real-world scale.

Finally, when dealing with n > 1 cameras, we align the

skeletons centroids and use a least squares approach to

find a set of rigid transformations T{i→0|i=1,...,n} from

each skeleton to another one in 3D world space. After

minimizing the displacement error between skeletons in

3D space, we can exploit the epipolar geometry as well

as the world-space and image-space position of joints

to retrieve both the extrinsic parameters for rotation

and translation R | t and the fundamental matrices

F{i→0|i=1,...,n}. In case of a single camera, the match-

ing step and the fundamental matrix calculations are

being ignored and we simply retrieve the camera ma-

trix as well as the 3D human pose and shape.
Whenever the framework detects a difference in the de-

tected 3D-space joints, which is bigger than a threshold,

it triggers a new re-calibration cycle, in order to keep

the network calibrated over time, progressively refining

its accuracy. Another big advantage of our method is its

flexibility. In fact, it can work even with a single camera

and it allows for new cameras to be plugged into the

system in a dynamic fashion.

In the next sections we refer to the camera matrix

as P . The intrinsic matrix is defined by K, where fx =

fmx and fy = fmy represent the focal length values in

pixels, scaled along x and y by a scaling value m. The

principal point of the camera is represented by (x0, y0).

Extrinsic parameters are modelled by [R | t], where R

is the rotation matrix and t identifies the translation

vector.

P =

K
︷ ︸︸ ︷




fx s x0

0 fy y0
0 0 1



×

[R — t]
︷ ︸︸ ︷
(
R t

0 1

)

(1)

4.1 2D pose matching

As a first step, we provide a module that handles fast

multi-person 2D pose estimation and filters detected

skeletons to ensure good pose-based subject matches

across the views. This first part of the architecture takes

as input n RGB frames and outputs a bounding box for

the target person in each image in terms of 2D pose,
together with the overall highest detection confidence

score among all the views. To ensure real-time perfor-

mances, we employ an improved version of the method

described by Cao in [2] for joint parts and pairs de-

tection, namely Single-Network Whole-Body Pose Es-

timation (SNWBP) [9]. Alternatively, under particular

conditions such as fixed, single-person, noise-free and

occlusions-free scenarios, it is possible to employ clas-

sic background subtraction methods or more advanced

versions such as [29] to extract the bounding boxes.

At this point the skeleton joints information is al-

ready sufficient to calculate the fundamental matrices

that link the views. However, we decided to further re-

inforce this estimation by providing additional points

obtained from the re-projection of the 3D skeleton onto

the image planes, as we will explain later on. By doing

so, we observe an increment in the accuracy of the final

fundamental matrices. Therefore, at this phase we only

keep a reference to the displacement of the central point

[Dpix
x , Dpix

y ] and the pixel-size of each bounding box, as

well as an unscale factor, which serves as a parameter

that can be used to reverse the scaling of the bounding

boxes.

The 3D mesh recovery module based on [13] is able to

retrieve an estimation of the person height, which can
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Fig. 3 Illustration of the proposed pipeline: from a single RGB image to the estimation of the extrinsic parameters of the
camera. In case of a camera network, the same pipeline is applied for each camera, before a 3D matching phase, as described
in Fig. 1

Fig. 4 2D pose estimation for bounding box extraction

be used as a substitute to the real height. However, we

provide as an option the possibility to give as additional

input the real height of the considered subject in order

to maximise the accuracy of the calibration.

4.2 Mesh recovery

Once we recovered the matching bounding boxes across

all the different views together with the optional joint

information, we need to recover 3D joints information

that we will use to calculate the extrinsic parameters.

At this point, each scaled bounding box B0,...,n is con-

figured as a crop of the frames containing the sub-

ject chosen by 2D pose-similarity, as seen from differ-

ent viewpoints. We now need to retrieve the 3D skele-

ton joints from each viewpoint, in a monocular fashion
without relying on information from the other views.

To achieve this, we employ our modified version of the

method described in [13] and [16] (SPIN). By feeding

each bounding box Bi to the network, we obtain the

vector Θ, corresponding to the SMPL (Skinned Multi-

Person Linear Model) [17] human body model param-

eters, which is configured as follows:

Θ = [

camera
︷ ︸︸ ︷

s, tx, ty,

pose
︷︸︸︷

θ ,

shape
︷︸︸︷

β ] (2)

From each human meshM(θ, β)i it is possible to ob-

tain a set of J = 19 world-scale 3D joints ξi (in meter

Fig. 5 Principal point offset for mesh positioning in the weak
perspective camera model does not correspond to a real-world
mesh translation [28].

coordinates). The 10 body shape parameters β encode

different deformations of the mesh shape, and are used

to refine the weak 2D pose matching described in 4.1

as well as removing remaining outliers. We discard the

original camera parameters s, tx, ty since they model a

weak perspective pinhole camera model with its prin-

cipal point shifted by [tx, ty] (Fig. 5). In the original

model described in [13], the world translation of the

mesh is computed as z = F/s, where s is a scaling

factor.

The weak perspective model is not accurate enough

for retrieving real-world mesh displacements because

it does not take into account perspective transforma-

tions. In fact, in weak perspective geometry, perspec-

tive transformations are modeled via a simple scaling

in the subject size, proportionally to its distance from

the camera. In practice, if we take into account the

manifold of commercially available sensors and lenses,

employing a weak camera model is a strong generali-

sation, which can lead to substantial errors. For this

reason, we substitute the original weak camera model

with a fully-fledged perspective one, to recover the real-

world mesh displacement ∆mm in millimeters, as shown

in Eq. 3:
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∆mm =

[
∆mm

x

︷ ︸︸ ︷

∆mm
z ∆pix

x

fpix
x

,

∆mm

y

︷ ︸︸ ︷

∆mm
z ∆pix

y

fpix
y

,

∆mm

z

︷ ︸︸ ︷

fmmwBmm

WBpix

]

(3)

where fpix = [fpix
x , fpix

y ] corresponds to the focal

length values in pixels, w is the image width in pixels

and W is the sensor width in millimeters. Bpix and

Bmm are the image-coordinates and world-coordinates

sizes of the bounding boxes retrieved from 4.1. At this

point, ∆mm
i contains the real-world relative translation

going from the camera Ci to the 3D skeleton ξi.

4.3 Skeleton matching

At this stage, in presence on an arbitrary number n > 1

cameras, we have obtained n camera-centric systems

each one referring to a 3D skeleton. The next step is

setting each skeleton’s centroid ci as the pivot point for

each corresponding camera Ci. Thus, we need to find
the rotation matrices Ri that map each skeleton ξ1,...,n
to ξ0. We achieve this by moving towards a skeleton-

centric system, in which each skeleton centroid c is po-

sitioned in the center of coordinates (0, 0, 0). In this

space, we can find the relative skeleton-to-skeleton trans-

formations in terms of rotations and translations using

a single value decomposition (SVD) approach, as ex-

plained in equations 4 and 5.

H = ξ0 · ξi , U, S, V ⊤ = SV D(H) (4)

R = V · U⊤ , t = ci − (R · c⊤0 ) (5)

More in detail, we calculate H as the dot product

of a pair of 3D point sets of joints ξ0 and ξi. We then

apply an SVD to H to find the matrices U, S, V , as

explained in Eq. 4. Finally, we find the rotation matrix

R and the translation vector t as detailed in Eq. 5. A

simple representation of the 3D skeleton match can be

seen in Fig. 6.

Then, we move back to the camera-centric space

and find the transformation that maps ξ0 to ∆mm
0 . We

finally find the inverse transformations ∆mm
i , starting

from Eq. 3.

By applying this procedure, we obtain a 3D space, in

which the first camera C0 is positioned at the center of

the coordinate system, the n skeletons are in ∆mm
0 and

the relative position of all the other virtual cameras is

known. An example of the final output of the whole

pipeline can be seen in Fig. 7.

[ ξ₀ ] [ ξ₁ ]

SVD(H)

H₌ξ₀·ξ₁

Fig. 6 Our SVD approach for 3D skeleton matching

Fig. 7 Visualisation of the final result of our automatic cal-
ibration pipeline.

4.4 Fundamental matrix

With the skeletons ξ0,...,i correctly positioned in the 3D

world, we calculate Σ as the merged 3D skeleton con-

taining the mean values of all the joints coming from

ξ0,...,i in world-space coordinates. Since we also know

the position of each camera in the 3D world, we can

project Σ to each image plane of Ci, obtaining σi. We

then build a vector σi containing 2D skeleton joints

values for a batch of frames coming from Ci and use it

as ordered keypoints to find the fundamental matrices

Fi→0 that match camera Ci with camera C0.

This allows us to find the epipolar lines and correspond-

ing matching points between pairs of camera views.

Moreover, since the extrinsic matrices have been pre-

viously retrieved, it is possible to describe, how points

in world coordinates map to each camera coordinate

system, and viceversa.

5 Results

To test our framework, we conducted seven real-world

experiments in different scenarios, as listed in Table 2.
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The first four experiments were carried out in a real

living lab consisting of three rooms, which is equipped

with a network of identically-configured HD and FullHD

cameras monitoring all the rooms. The last three exper-

iments serve as a comparison of the proposed pipeline

with our previous method, which employed video se-

quences instead of single frames, as well as slower and

less precise human pose estimators. Our results are com-

parable with the ones provided by [5], both in terms of

spatial configuration and precision, even if we rely on

just monocular information from simple RGB cameras

and not on depth or triangulation. Experiments 2,3,7

show how our method is robust against important oc-
clusions in the scene. In experiment 5 we demonstrate

how our method can also work with very distant and

little overlapping cameras. In experiment 6 we employ

two handheld smartphones (not stabilized) and success-

fully retrieve a good estimation of their pose in the 3D

world.

5.1 Quantitative results

The main results of our experiments are listed in Ta-

ble 1 and Table 2. As can be seen, they are comparable

with the results provided by [5], particularly taking into

consideration that we only employ monocular cameras
and no additional depth sensors. The metrics MinSDE,

ASDE and MaxSDE, describe the minimum, average,

and maximum displacement of skeletal joints, respec-

tively, after the matching in 3D space, in meters, cal-

culated by the Euclidean distance:

SDE =

√
√
√
√

n∑

i=1

(

ξ0 − ξi

)

(6)

RPD, VPD (real and virtual plane displacements)

are the measures of the displacement from the origin

along the real world plane and the virtual world plane

respectively. The RPD has been calculated starting from

ground truth annotations, while the VPD can be calcu-

lated once again with an Euclidean distance from the

origin, discarding the z component. The plane displace-

ment error (PDE) is computed as | RPD−V PD |, once
again in meters. The MRE is the mean reprojection er-

ror calculated after applying the fundamental matrix F

to the set of points σi.

Our results for most of the scenarios are also better

than the checkerboard results obtained by [5] using the

method described in [35].

5.2 Reprojection error

After finding the fundamental matrices F for each scene
and the corresponding epipolar lines, we assess the pre-

cision of our method by calculating the reprojection

error in term of point-line-distance, as follows:

| ax0 + bx0 + c |√
a2 + b2

(7)

where a, b and c are the epipolar lines coefficients

and [x0, y0] are the coordinates of the projected points.

In Table 1 the reprojection errors in pixels for each

scenario are listed, showing that the proposed method

is robust in all the four test environments considered.

Scenarios

Kitchen Gym Laboratory Apartment
MRE 12.77 6.15 12.03 8.38

Table 1 Reprojection errors in pixels for the four test sce-
narios

5.3 Qualitative results

In Figs. 8 and 9 we provide some qualitative results

through the Autodesk Maya R© 3D animation, model-
ing, simulation, and rendering software. In each image

a reconstruction of the 3D scene is shown, including the

3D skeleton used for the matching, the virtual plane and

every virtual camera with correct roll, pitch, yaw, trans-

lation, focal length and frustum size. We decided to

discard the approximate differentiable render OpenDR

[18] used by [17] and [13] in favour of Maya because

the latter lets us configure in fine details many camera

parameters including the focal length, the film gate and
frustum size in millimeters. Moreover, our entire code

can directly run into the Maya environment, allowing us

to easily extend the scope of our work to weak monocu-

lar 3D human motion capture from video footage, also

from a single camera. Our 3D reconstruction module in

Maya is standalone and can receive camera and skele-

ton data from an external machine via a command port

socket in real-time. As an alternative, we provide bind-

ings for Open3D.

Concluding, despite the lack of proper datasets to bench-

mark these kind of applications, we also provide, in ad-

dition to the original experiments, some good qualita-

tive results from the Panoptic Dataset [12] and from

fully simulated scenarios. In Fig. 10 we show an exam-

ple of camera pose estimation from 8 different views

caught from 8 virtual cameras inside the Unity 3D en-

vironment. Similar results can be obtained for all the

480 VGA cameras in the Panoptic Dataset.
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Fig. 8 Kitchen scenario

Fig. 9 Gym scenario

Top view

Front view

Free view

Side view

Fig. 10 Simulated scenario: estimating the pose of 8 virtual cameras inside Unity
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Experiments

1 2 3 4 5 6 7
Kitchen A Kitchen B Kitchen C Living room Wheelchair gym Laboratory Apartment

Configuration

Num. of cameras 2 2 2 1 3 2 2
Num. of frames 1 1 1 1 250 250 875

Sensor size
1/3”

6.28mm
1/3”

9.1mm
1/3.2”
5.7mm

1/2.8”
6.3mm

1/2.8”
7mm

Focal length 4.0 5.0 4.0 5.0 4.0 5.0 5.0 3.0 3.0 5.5 4.0 4.07 4.5 6
3D matching

SDE min 3.34e-08 3.28e-08 2.24e-08 n.d. 0.04 0.01 0.10
SDE avg 0.04 0.07 0.04 n.d. 0.08 0.06 0.13
SDE max 0.06 0.10 0.08 n.d. 0.14 0.08 0.16

Real-world displacement

RPD 6.09 6.97 5.86 5.45 7.73 5.66 3.26
VPD 6.46 7.04 6.24 5.50 7.92 5.79 3.35
PDE 0.37 0.07 0.38 0.05 0.21 0.13 0.09

Table 2 Experimental results. Columns: the seven different test scenarios (the last three are results from our previous method
[7]). Rows: number of cameras, number of frames, sensor sizes, focal length, 3D skeleton displacement error (min, average,
max), displacement along the plane (real plane, virtual plane, plane displacement error)

6 Conclusions

We presented a completely unsupervised and one-shot

camera network calibration framework capable of cali-

brating a single camera or a camera network only from

monocular human pose estimation cues. We employ a 3-

stage approach which comprises (i) fast, single network

whole body pose estimation and matching among cam-

era views, (ii) perspective corrected, optimised monoc-

ular human mesh recovery from a single frame and (iii)

joint 2D and 3D skeleton matching in camera-centric

and skeleton-centric coordinates. As final output we

provide the extrinsic parameters for linking world space

with camera space for each camera in the network,

as well as their fundamental matrices, to link camera

views. Compared to the other related works in liter-

ature and with our previous approach, the presented

framework enables the possibility for real-time, one-

shot network calibration, which is camera-independent

and which requires only one frame as input. It is ro-

bust to occlusions and noise in the scene thanks to the

3D skeleton matching approach, and it is able to per-

form real-time re-calibration thanks to its streamlined

parallel architecture.

6.1 Future work

As future work, the adoption of a capsule network model

for estimating the body pose could solve many issues,

particularly with respect to (i) pose flickering, (ii) ex-

treme camera viewpoints and (iii) non-existent viewpoint-

equivariance. Additional improvements could be made

by reinforcing the matching algorithm with SIFT/SURF

features and alike. Adding the possibility to estimate

the intrinsic parameters in a robust way could greatly

improve the overall deployability and accuracy of our
framework.
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