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Abstract
Camera calibration is a necessary preliminary step in computer vision for the estimation of the position of objects in the 3D 
world. Despite the intrinsic camera parameters can be easily computed offline, extrinsic parameters need to be computed 
each time a camera changes its position, thus not allowing for fast and dynamic network re-configuration. In this paper we 
present an unsupervised and automatic framework for the estimation of the extrinsic parameters of a camera network, which 
leverages on optimised 3D human mesh recovery from a single image, and which does not require the use of additional 
markers. We show how it is possible to retrieve the real-world position of the cameras in the network together with the floor 
plane, exploiting regular RGB images and with a weak prior knowledge of the internal parameters. Our framework can also 
work with a single camera and in real-time, allowing the user to add, re-position, or remove cameras from the network in a 
dynamic fashion.

Keywords  Camera calibration · Pose estimation · Human mesh recovery · 3D matching

1  Introduction

In computer vision and 3D reconstruction, many works over 
the years have tried to automate the process of camera resec-
tioning and calibration. Having the possibility to minimise 
the manual intervention within the calibration pipeline could 
simplify its deployment in many contexts and in a signifi-
cant way. However, there is still a lack for fully unsuper-
vised and markerless approaches for camera calibration in 
literature. The manifoldness of camera sensors and lenses 
present in the market hinders any generalization attempt. 
Another aspect that plays an important role in increasing the 
difficulty of automatic calibration is the dynamic nature of 
the environments, in which camera networks are generally 
being installed. For example, in many scenarios, including 
video surveillance, Ambient Assisted Living (AAL) and 

environmental monitoring, the reconfiguration and conse-
quent re-calibration of the camera network is a common pro-
cess, often due to the re-positioning or addition of pieces 
of furniture, or, more in general, the presence of obstacles 
that can partially or fully limit the visibility of the observed 
environment. In addition, cameras with pan-tilt-zoom (PTZ) 
capabilities are often used. A big issue linked to the usage 
of PTZ cameras is that they are capable of changing their 
internal configuration, making it necessary to re-calibrate 
the whole network whenever these changes occur. In addi-
tion, wind or other weather conditions may also further 
complicate the scenario, introducing noise, and making it 
difficult to accomplish even the simplest vision tasks, such 
as keypoints extraction, motion detection and tracking.

Generally speaking, the internal configuration of a cam-
era usually remains fixed, unless when zooming, refocus-
ing or changing the lens parameters. Many good solutions 
to estimate the intrinsic parameters of a camera have been 
provided in the literature, and they usually require the usage 
of a checkerboard or other calibration tools.

On the other hand, extrinsic parameters model the rela-
tion between the camera coordinates and the real-world 
coordinates. Ideally, extrinsic parameters remain unaltered 
if both the camera and world long-term steadiness can be 
guaranteed. For this reason, even a slight movement of the 
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camera can cause a loss in calibration precision, leading to 
the need of re-calibrating the whole system. This is problem-
atic because the standard calibration procedures, though not 
complex, are rather time consuming and require the usage of 
third party calibration instruments by an expert technician 
who needs to be on the spot to perform the task. Another 
issue is that whenever a calibration is in progress, the camera 
network remains busy and inoperable.

A few approaches in literature [8] try to simplify the cali-
bration process by increasing the accuracy of the calibra-
tion pattern detectors, thus reducing the number of required 
checkerboard images. However, despite being fast, they still 
require manual intervention. For example, although in a dif-
ferent application scenarios, the adoption of markerless solu-
tions has been explored in the autonomous driving context, 
exploiting visual odometry [21], SLAM [6], and optical flow 
[19] for feature tracking; however, they are often not suitable 
for surveillance scenes, since such methods require a fixed 
camera configuration with respect to the vehicle, in order to 
exploit the car movement information for calibration. Other 
methods use SIFT/SURF feature matching between camera 
views to estimate the extrinsic camera parameters [11], but 
they usually require additional data from other sensors, such 
as active range sensors.

A recent trend in computer vision is pedestrian-based 
camera calibration, which focuses on finding how to estimate 
both intrinsic and extrinsic camera parameters by exploiting 
the cues provided by walking humans. In particular, these 
approaches are usually based on:

•	 Manhattan World Assumption
•	 Planar trajectories
•	 Skeleton data from 3D sensors

The approaches based on the Manhattan World Assump-
tion [4] are usually adopted in city-like environments due to 
their geometric homogeneity, but may fail in other scenar-
ios, when no such geometric cues are being found. Human 
detection and tracking have been explored in literature as a 
support for vanishing point estimation and to estimate the 
ground plane from multiple camera views [30]. However, 
these methods often require a prior knowledge of the cam-
eras’ vertical position or of the people height, they are not 
robust to occlusions, noise, and can be fooled by uncon-
ventional human poses. Recently, RGBD sensors such as 
the Microsoft Kinect V21 and the Intel RealSense2 allowed 
obtaining a better understanding of the scene through depth 
and 3D skeleton pose estimation [23, 26, 27]. However, there 

are many issues linked to the usage of RGBD sensors such 
as Kinect and RealSense to calibrate a camera network from 
the skeleton information. Among them, the most relevant 
ones are:

•	 Small range (usually  4m) of the depth sensor; this con-
straint is not suitable for large environments.

•	 Low precision; occlusions, ambiguities and reflections in 
the scene are an important factor for the skeleton extrac-
tion precision.

•	 High infrastructural and processing cost; multiple com-
puters and GPUs are usually required to process data 
coming from a network of RGBD sensors in real-time.

A recent trend in computer vision concerns the area of 
human pose estimation from monocular images. There have 
been many successful examples, such as [24, 33] and [2]. 
Many of the good results have been made possible thanks to 
the availability of very large datasets, in particular CMU’s 
Panoptic Studio [12], which contributed to speed up the 
development of many popular and open source frameworks, 
such as OpenPose [3].

Amongst the different kinds of 3D monocular human 
pose estimation techniques used in literature, we can dis-
tinguish between:

•	 two-stage approaches
•	 end-to-end approaches

Two-stage approaches, such as [31], first estimate 2D joints 
and then recover the depth component. On the other hand, 
end-to-end approaches try to recover the 3D skeleton or 
mesh in one shot. Kanazawa et al.’s work [13] is one of the 
most recent ones, which takes as input an image, encod-
ing it into body pose, shape and weak camera pose via a 
CNN encoder; then, a discriminator is used as supervisor 
to encourage a better loss, by comparing the produced 3D 
model with a pool of real scanned 3D human poses (Fig. 2). 
Despite it being a very good approach to estimate the 3D 
mesh of a person, it may still fail, especially when deal-
ing with unusual viewpoints and in time-constrained sce-
narios. Kolotouros et al. in SPIN (SMPL oPtimization IN 
the loop) [16] provide a fix to these issues by employing 
an hybrid top-down and bottom-up approach that aims at 
optimising the human mesh recovery (HMR) phase. Their 
method is based on the iterative application of optimisation 
and regression-based approaches (such as [13]) to further 
improve human mesh recovery, by mixing the advantages 
of both the approaches, in particular the accuracy of the first 
one with the speed of the second one.

Starting from Kanazawa’s work, we extend it in a similar 
fashion as the one described in [16], and re-purpose in order 
to work with multiple views and with a more realistic camera 

1  https​://devel​oper.micro​soft.com/en-us/windo​ws/kinec​t.
2  https​://www.intel​.com/conte​nt/www/us/en/archi​tectu​re-and-techn​
ology​/reals​ense-overv​iew.html.

https://developer.microsoft.com/en-us/windows/kinect
https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
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model, that allows us to better estimate the extrinsic param-
eters for each camera. Our results show that, starting from a 
single frame, the retrieved human skeleton alone can provide 
a sufficient number of keypoints to estimate the real-world 
3D position of cameras in a network, thus achieving fully 
unsupervised camera calibration. We show results in differ-
ent scenarios and with different cameras configurations and 
discuss on how our method can be further extended for bet-
ter accuracy. This work is an extension of our previous work 
[7]. The main contribution, compared to the work in [7] 
consists of the capability of the system to obtain real-time 
camera network calibration, at comparable accuracy. This is 
achieved thanks to the adoption of a faster SNWBP network 
[9] and a more precise human mesh recovery pipeline [16]. 
These improvements allow for an even easier deployment in 
real-world scenarios, and are particularly helpful when deal-
ing with large camera networks and real-time constraints.

2 � Related work

2.1 � Human Pose Estimation (HPE)

Before the advent of deep learning, classical HPE 
approaches were based on the so-called pictorial structures 
framework [1]. Later on, this kind of hand-crafted features, 
as well as customised hardware solutions (e.g., RGBD-based 
sensors) became less popular, making room for HPE algo-
rithms based on deep learning paradigms.

Many human pose estimation techniques [3, 33] are based 
on bottom-up 2D skeleton estimation to guarantee good 
performances. Recent contributions [31] explore two-stage 
approaches, in which the 2D pose is first estimated and then 
used as a baseline to infer the corresponding 3D pose.

2.1.1 � Bottom‑up approaches

Estimating the human pose in a bottom-up fashion means 
first estimating all the joints in a frame and then linking 
them together in a meaningful, structured hierarchy. Cao 
et al.’s Realtime multi-person 2D pose estimation using part 
affinity fields [2] is one of the most popular multi-person 
real-time 2D pose estimation works in literature. It combines 
the architecture of a CNN-based variation of Pose Machines, 
called Convolutional Pose Machines [33], leveraging on part 
affinity fields. Part affinity fields can be defined as a group 
of oriented vectors linking different joints. In other words, 
part affinity fields can be seen as confidence maps identify-
ing bones, while joint confidence maps identify joints and 
articulations.

The solution, presented in [2], is very robust to large scale 
occlusions and self occlusions. Its dual-branch architecture 
for CNN-based joint parts and pairs estimation is optimised 

to run in real-time on consumer hardware, making it suitable 
for many research applications, and known as OpenPose [3]. 
However, it is still not faster than many top-down approaches 
when dealing with low density scenarios. Recently, it has 
been extended with a single track architecture [9], rendering 
it much faster than before, also embedding the hand and face 
joint information.

2.1.2 � End‑to‑end solutions for 3D human pose estimation

End-to-end recovery of human shape and pose [13] is one of 
the most popular works in joint 3D human shape and pose. 
From a single RGB image of a person, the human pose � 
and body shape � are regressed, together with camera scale 
s, rotation R and translation T.

An issue with this approach is that it is not suitable for 
run-time application and it is highly affected by viewpoint 
changes and flickering between frames, due to the lack of 
temporal coherence. Other works (see [14, 16, 22]) inspired 
by [13] try to solve the flickering issue by using temporal 
cues or predicting future poses.

2.2 � Automatic calibration

Most of the automatic extrinsic calibration works in litera-
ture leverage on the so called Manhattan World Assumption 
[4], which assumes that the geometry typical of urban areas 
makes it easier to discover vanishing points from images 
taken in those kind of environments. As an example, Zhang 
et al. in [35] propose a solution that exploits the geometry of 
solar panels to estimate orthogonal vanishing points. While 
such assumption is valid and works well in city scenarios, 
it does not generalize sufficiently, especially when indoor 
scenes are taken into consideration. Many methods in lit-
erature deal with the problem of finding the parameters of a 
single camera which is being plugged in to an existing and 
already calibrated camera network. Vasconcelos et al. in [32] 
exploit sets of pairwise correspondences among images in 
order to estimate the pose of the new camera. Despite the 
high deployability, this method only works when the extrin-
sic parameters of the other cameras are known. In literature, 
methods for self-calibration of pan-tilt [15] and tilt-zoom 
[25] cameras can also be found. Traditionally, such kind 
of self calibration problems are handled using geometrical 
constraints; however, with the growing popularity of deep 
learning, some approaches tried to solve the problem, as in 
Hold-Geoffroy et al.’s work [10], which aims at estimating 
pitch, roll and focal length of a single camera employing 
convolutional neural networks. Of particular interest from 
this viewpoint, some very recent works focus on embedding 
CNN capabilities directly into camera sensors. One of the 
first works to achieve such results is Bose et al.’s A Cam-
era That CNNs: Towards Embedded Neural Networks on 
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Pixel Processor Arrays, an interesting proposal that could 
open new possibilities for in-camera self-calibration. With 
the growing popularity of omnidirectional cameras, Miyata 
et al. in [20] show how to exploit their large field of view 
to anchor non-overlapping views. However, such solution 
are not employable in some scenarios, such as AAL, since 
occlusions may play an important role for the failure of the 
keypoints detectors. Augmented reality (AR) also played an 
important role for refreshing the field of camera calibra-
tion. Zhao et al. in [36] employ augmented reality markers 
placed directly on top of cameras in order to perform camera 
calibration. However, the method requires the usage of an 
additional dedicated camera just for the recognition of the 
AR markers.

Perhaps the most popular approaches for automatic cam-
era calibration are the ones employing vanishing points esti-
mation. Tang et al. in ESTHER [30] propose a complete 
pedestrian trajectory-based solution for joint intrinsic and 

extrinsic parameters estimation, especially focusing on 
intrinsic calibration for distortion correction. However, their 
method requires pedestrian to walk in a standard upright 
position, as well as a prior knowledge of the cameras verti-
cal height.

To our best knowledge, few other works exploit human 
pose cues for camera calibration, and most of them exploit 
3D sensors data, such as depth maps or cameras disparity 
information.

Desai et al. in [5] propose a skeleton-based method for 
semi-automatic continuous calibration of Kinect V2 sen-
sors. In their work, they also explore some issues related 
to working with depth sensors, such as low range of vision, 
skeleton flipping and high computational costs. Among the 
many recent 3D human pose estimation works, some also try 
to jointly retrieve human pose and weak camera parameters. 
Kanazawa et al.’s approach [13] provides an estimation of 
the subject in terms of mesh, shape and pose representation, 
as well as some shallow cues of the camera pose.

3 � Method overview

In this section, we refer to Fig. 3 to provide a red thread to 
explain our method’s pipeline. During phase A, for each 
camera Ci in the network we acquire a single frame in a 
synchronous fashion. Then, each frame is forwarded to a 
Single-Network Whole-Body Pose Estimation (SNWBP) 
[9] network (phase B), which is a very fast convolutional 

Fig. 1   An overview of our cam-
era network calibration pipeline. 
In the figure, SNWBP refers to 
a Single-Network Whole-Body 
Pose Estimation, the filters 
prepare the inputs for the SPIN 
human mesh recovery module. 
The matcher simply matches the 
obtained 3D skeletons in order 
to compute the output poses

C1

C2

Cn

SNWBP

SNWBP

SNWBP

Filter

Filter

Filter

SPIN

SPIN

SPIN

Matcher

Matcher

Matcher

P1

P2

Pn

[Σ, T, F ]

I1

I2

In

σ1

σ2

σn

B1

B2

Bn

[Θ1, β1, ξ1]

[Θ2, β2, ξ2]

[Θn, βn, ξn]

[σ1, σ2, σn]

Fig. 2   Joint pose, shape and camera estimation of End-to-end recov-
ery of human shape and pose [13] pipeline

Fig. 3   Illustration of the proposed pipeline: from a single RGB image to the estimation of the extrinsic parameters of the camera. In case of a 
camera network, the same pipeline is applied for each camera, before a 3D matching phase, as described in Fig. 1
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network that is able to infer the 2D skeleton ( � ) of multiple 
people inside the image in real-time. In this phase we also 
use the 2D skeleton information to compute a 2D bounding 
box Bi for each detected person in each frame. Then, dur-
ing phase C, we use our joint human mesh recovery and 
camera pose estimation network, which is based on [16]. 
Starting from the monocular human mesh recovery network 
described in [16], we extend it by modifying the underlying 
camera model, providing a full perspective camera model. 
This addition, makes it possible, during phase D, to exploit 
the information acquired in the previous steps, such as the 
bounding boxes, 2D and 3D skeletons, body shape and pose 
parameters, to retrieve a good estimation of the camera pose 
for each camera in the network. All the four phases can run 
in parallel for each camera in the system, and in a continuous 
loop, in order to maximise both performance and precision 
by refining the calibration results over time.

4 � The proposed model

In this section, we propose our one-shot method for fully 
automatic and unsupervised camera network calibration that 
leverages on monocular 3D human pose estimation from 
single images. In Figs. 1 and 3 we describe the pipeline and 
the different steps of our architecture. Looking at the bigger 
picture, our framework receives as input a single RGB frame 
I0,…,n from n ≥ 1 camera video streams C0,…,n . We then apply 
fast, single network 2D pose estimation [9] for each frame, 
in order to filter matching subjects across frames and obtain 
the corresponding bounding boxes B0,…,n (Fig. 4). We then 
apply our custom optimised human mesh recovery method 
based on [13, 16] to infer the 3D position of skeletal joints 
together with their real-world scale. Finally, when dealing 
with n > 1 cameras, we align the skeletons centroids and 
use a least squares approach to find a set of rigid transfor-
mations T{i→0∣i=1,…,n} from each skeleton to another one in 
3D world space. After minimizing the displacement error 
between skeletons in 3D space, we can exploit the epipolar 
geometry as well as the world-space and image-space posi-
tion of joints to retrieve both the extrinsic parameters for 

rotation and translation R ∣ � and the fundamental matrices 
F{i→0∣i=1,…,n} . In case of a single camera, the matching step 
and the fundamental matrix calculations are being ignored 
and we simply retrieve the camera matrix as well as the 3D 
human pose and shape.

Whenever the framework detects a difference in the 
detected 3D-space joints, which is bigger than a threshold, 
it triggers a new re-calibration cycle, in order to keep the 
network calibrated over time, progressively refining its accu-
racy. Another big advantage of our method is its flexibility. 
In fact, it can work even with a single camera and it allows 
for new cameras to be plugged into the system in a dynamic 
fashion.

In the next sections, we refer to the camera matrix as P. 
The intrinsic matrix is defined by K, where fx = fmx and 
fy = fmy represent the focal length values in pixels, scaled 
along x and y by a scaling value m. The principal point of 
the camera is represented by (x0, y0) . Extrinsic parameters 
are modelled by [R ∣ �] , where R is the rotation matrix and t 
identifies the translation vector.

4.1 � 2D pose matching

As a first step, we provide a module that handles fast multi-
person 2D pose estimation and filters detected skeletons to 
ensure good pose-based subject matches across the views. 
This first part of the architecture takes as input n RGB 
frames and outputs a bounding box for the target person in 
each image in terms of 2D pose, together with the overall 
highest detection confidence score among all the views. To 
ensure real-time performances, we employ an improved ver-
sion of the method described by Cao in [2] for joint parts 
and pairs detection, namely Single-Network Whole-Body 
Pose Estimation (SNWBP) [9]. Alternatively, under particu-
lar conditions such as fixed, single-person, noise-free and 
occlusions-free scenarios, it is possible to employ classic 
background subtraction methods or more advanced versions 
such as [29] to extract the bounding boxes.

At this point the skeleton joints information is already 
sufficient to calculate the fundamental matrices that link the 
views. However, we decided to further reinforce this estima-
tion by providing additional points obtained from the re-
projection of the 3D skeleton onto the image planes, as we 
will explain later on. By doing so, we observe an increment 
in the accuracy of the final fundamental matrices. Therefore, 
at this phase we only keep a reference to the displacement 
of the central point [Dpix

x ,D
pix
y ] and the pixel-size of each 

(1)
P =

K

⏞⏞⏞⏞⏞⏞⏞

⎛⎜⎜⎝

fx s x0
0 fy y0
0 0 1

⎞⎟⎟⎠
×

[R |

⏞⏞⏞⏞⏞�
R �

0 1

�
�]

Fig. 4   2D pose estimation for bounding box extraction
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bounding box, as well as an unscale factor, which serves 
as a parameter that can be used to reverse the scaling of the 
bounding boxes.

The 3D mesh recovery module based on [13] is able to 
retrieve an estimation of the person height, which can be 
used as a substitute to the real height. However, we provide 
as an option the possibility to give as additional input the 
real height of the considered subject in order to maximise 
the accuracy of the calibration.

4.2 � Mesh recovery

Once we recovered the matching bounding boxes across all 
the different views together with the optional joint informa-
tion, we need to recover 3D joints information that we will 
use to calculate the extrinsic parameters. At this point, each 
scaled bounding box B0,…,n is configured as a crop of the 
frames containing the subject chosen by 2D pose-similarity, 
as seen from different viewpoints. We now need to retrieve 
the 3D skeleton joints from each viewpoint, in a monocular 
fashion without relying on information from the other views.

To achieve this, we employ our modified version of the 
method described in [13] and [16] (SPIN). By feeding each 
bounding box Bi to the network, we obtain the vector � , 
corresponding to the SMPL (Skinned Multi-Person Linear 
Model) [18] human body model parameters, which is con-
figured as follows:

From each human mesh M(�, �)i it is possible to obtain 
a set of J = 19 world-scale 3D joints �i (in meter coordi-
nates). The 10 body shape parameters � encode different 
deformations of the mesh shape, and are used to refine the 
weak 2D pose matching described in Sect. 4.1 as well as 
removing remaining outliers. We discard the original camera 
parameters s, tx, ty since they model a weak perspective pin-
hole camera model with its principal point shifted by [tx, ty] 
(Fig. 5). In the original model described in [13], the world 
translation of the mesh is computed as z = F∕s , where s is 
a scaling factor.

The weak perspective model is not accurate enough for 
retrieving real-world mesh displacements because it does 
not take into account perspective transformations. In fact, in 
weak perspective geometry, perspective transformations are 
modeled via a simple scaling in the subject size, proportion-
ally to its distance from the camera. In practice, if we take 
into account the manifold of commercially available sen-
sors and lenses, employing a weak camera model is a strong 
generalisation, which can lead to substantial errors. For this 
reason, we substitute the original weak camera model with 

(2)
� = [

camera

⏞⏞⏞
s, tx, ty ,

pose

⏞⏞⏞
� ,

shape

⏞⏞⏞
� ]

a fully-fledged perspective one, to recover the real-world 
mesh displacement �mm in millimeters, as shown in Eq. 3:

where f pix = [f
pix
x , f

pix
y ] corresponds to the focal length val-

ues in pixels, w is the image width in pixels and W is the 
sensor width in millimeters. Bpix and Bmm are the image-
coordinates and world-coordinates sizes of the bounding 
boxes retrieved from 4.1. At this point, �mm

i
 contains the 

real-world relative translation going from the camera Ci to 
the 3D skeleton �i.

4.3 � Skeleton matching

At this stage, in presence on an arbitrary number n > 1 cam-
eras, we have obtained n camera-centric systems each one 
referring to a 3D skeleton. The next step is setting each skel-
eton’s centroid ci as the pivot point for each corresponding 
camera Ci . Thus, we need to find the rotation matrices Ri that 
map each skeleton �1,…,n to �0 . We achieve this by moving 
towards a skeleton-centric system, in which each skeleton 
centroid c is positioned in the center of coordinates (0, 0, 0). 
In this space, we can find the relative skeleton-to-skeleton 
transformations in terms of rotations and translations using 
a single value decomposition (SVD) approach, as explained 
in Eqs. 4 and 5.

More in detail, we calculate H as the dot product of a pair 
of 3D point sets of joints �0 and �i . We then apply an SVD to 
H to find the matrices U, S, V, as explained in Eq. 4. Finally, 

(3)
�mm =

[
�mm
x

⏞⏞⏞⏞⏞

�mm
z

�
pix
x

f
pix
x

,

�mm
y

⏞⏞⏞⏞⏞

�mm
z

�
pix
y

f
pix
y

,

�mm
z

⏞⏞⏞⏞⏞⏞⏞
fmmwBmm

WBpix

]

(4)H = 𝜉0 ⋅ 𝜉i , U, S,V⊤ = SVD(H)

(5)R = V ⋅ U⊤ , � = ci − (R ⋅ c⊤
0
)

Fig. 5   Principal point offset for mesh positioning in the weak per-
spective camera model does not correspond to a real-world mesh 
translation [28]
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we find the rotation matrix R and the translation vector t as 
detailed in Eq. 5. A simple representation of the 3D skeleton 
match can be seen in Fig. 6.

Then, we move back to the camera-centric space and find 
the transformation that maps �0 to �mm

0
 . We finally find the 

inverse transformations �mm
i

 , starting from Eq. 3.
By applying this procedure, we obtain a 3D space, in 

which the first camera C0 is positioned at the center of the 
coordinate system, the n skeletons are in �mm

0
 and the rela-

tive position of all the other virtual cameras is known. An 
example of the final output of the whole pipeline can be 
seen in Fig. 7.

4.4 � Fundamental matrix

With the skeletons �0,…,i correctly positioned in the 3D 
world, we calculate � as the merged 3D skeleton contain-
ing the mean values of all the joints coming from �0,…,i in 
world-space coordinates. Since we also know the position of 
each camera in the 3D world, we can project � to each image 

plane of Ci , obtaining �i . We then build a vector �i contain-
ing 2D skeleton joints values for a batch of frames coming 
from Ci and use it as ordered keypoints to find the funda-
mental matrices Fi→0 that match camera Ci with camera C0.

This allows us to find the epipolar lines and corresponding 
matching points between pairs of camera views. Moreover, 
since the extrinsic matrices have been previously retrieved, it 
is possible to describe, how points in world coordinates map 
to each camera coordinate system, and viceversa.

5 � Results

To test our framework, we conducted seven real-world 
experiments in different scenarios, as listed in Table 2. The 
first four experiments were carried out in a real living lab 
consisting of three rooms, which is equipped with a network 
of identically-configured HD and FullHD cameras monitor-
ing all the rooms. The last three experiments serve as a com-
parison of the proposed pipeline with our previous method, 
which employed video sequences instead of single frames, as 
well as slower and less precise human pose estimators. Our 
results are comparable with the ones provided by [5], both in 
terms of spatial configuration and precision, even if we rely 
on just monocular information from simple RGB cameras 
and not on depth or triangulation. Experiments 2, 3, 7 show 
how our method is robust against important occlusions in the 
scene. In experiment 5 we demonstrate how our method can 
also work with very distant and little overlapping cameras. 
In experiment 6 we employ two handheld smartphones (not 
stabilized) and successfully retrieve a good estimation of 
their pose in the 3D world.

5.1 � Quantitative results

The main results of our experiments are listed in Tables 1 
and 2. As can be seen, they are comparable with the results 
provided by [5], particularly taking into consideration that 
we only employ monocular cameras and no additional 
depth sensors. The metrics MinSDE, ASDE and MaxSDE, 
describe the minimum, average, and maximum displace-
ment of skeletal joints, respectively, after the matching in 
3D space, in meters, calculated by the Euclidean distance:

Fig. 6   Our SVD approach for 3D skeleton matching

Fig. 7   Visualisation of the final result of our automatic calibration 
pipeline

Table 1   Reprojection errors in pixels for the four test scenarios

Bold indicates the lowest error for each metric

Scenarios

Kitchen Gym Laboratory Apartment

MRE 12.77 6.15 12.03 8.38
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RPD, VPD (real and virtual plane displacements) are the 
measures of the displacement from the origin along the real 
world plane and the virtual world plane respectively. The 
RPD has been calculated starting from ground truth annota-
tions, while the VPD can be calculated once again with an 
Euclidean distance from the origin, discarding the z com-
ponent. The plane displacement error (PDE) is computed as 
∣ RPD − VPD ∣ , once again in meters. The MRE is the mean 
reprojection error calculated after applying the fundamental 
matrix F to the set of points �i.

Our results for most of the scenarios are also better than 
the checkerboard results obtained by [5] using the method 
described in [34].

5.2 � Reprojection error

After finding the fundamental matrices F for each scene and 
the corresponding epipolar lines, we assess the precision of 
our method by calculating the reprojection error in term of 
point-line-distance, as follows:

where a, b and c are the epipolar lines coefficients and [x0, y0] 
are the coordinates of the projected points. In Table 1 the 
reprojection errors in pixels for each scenario are listed, 
showing that the proposed method is robust in all the four 
test environments considered.

(6)SDE =

√√√√ n∑
i=1

(
�0 − �i

)

(7)
∣ ax0 + bx0 + c ∣√

a2 + b2

5.3 � Qualitative results

In Figs.  8 and 9 we provide some qualitative results 
through the Autodesk Maya® 3D animation, modeling, 
simulation, and rendering software. In each image a recon-
struction of the 3D scene is shown, including the 3D skel-
eton used for the matching, the virtual plane and every 
virtual camera with correct roll, pitch, yaw, translation, 
focal length and frustum size. We decided to discard the 
approximate differentiable render OpenDR [17] used by 
[18] and [13] in favour of Maya because the latter lets us 
configure in fine details many camera parameters includ-
ing the focal length, the film gate and frustum size in mil-
limeters. Moreover, our entire code can directly run into 
the Maya environment, allowing us to easily extend the 
scope of our work to weak monocular 3D human motion 
capture from video footage, also from a single camera. Our 
3D reconstruction module in Maya is standalone and can 
receive camera and skeleton data from an external machine 
via a command port socket in real-time. As an alternative, 
we provide bindings for Open3D.

Concluding, despite the lack of proper datasets to 
benchmark these kind of applications, we also provide, in 
addition to the original experiments, some good qualita-
tive results from the Panoptic Dataset [12] and from fully 
simulated scenarios. In Fig. 10 we show an example of 
camera pose estimation from 8 different views caught from 
8 virtual cameras inside the Unity 3D environment. Simi-
lar results can be obtained for all the 480 VGA cameras in 
the Panoptic Dataset.

Fig. 8   Kitchen scenario
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6 � Conclusions

We presented a completely unsupervised and one-shot 
camera network calibration framework capable of cali-
brating a single camera or a camera network only from 
monocular human pose estimation cues. We employ a 
3-stage approach which comprises (i) fast, single network 
whole body pose estimation and matching among camera 
views, (ii) perspective corrected, optimised monocular 

human mesh recovery from a single frame and (iii) joint 
2D and 3D skeleton matching in camera-centric and skel-
eton-centric coordinates. As final output we provide the 
extrinsic parameters for linking world space with cam-
era space for each camera in the network, as well as their 
fundamental matrices, to link camera views. Compared to 
the other related works in literature and with our previous 
approach, the presented framework enables the possibil-
ity for real-time, one-shot network calibration, which is 

Fig. 9   Gym scenario

Fig. 10   Simulated scenario: estimating the pose of 8 virtual cameras inside Unity
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camera-independent and which requires only one frame 
as input. It is robust to occlusions and noise in the scene 
thanks to the 3D skeleton matching approach, and it is able 
to perform real-time re-calibration thanks to its stream-
lined parallel architecture.

6.1 � Future work

As future work, the adoption of a capsule network model for 
estimating the body pose could solve many issues, particu-
larly with respect to (i) pose flickering, (ii) extreme camera 
viewpoints and (iii) non-existent viewpoint-equivariance. 
Additional improvements could be made by reinforcing the 
matching algorithm with SIFT/SURF features and alike. 
Adding the possibility to estimate the intrinsic parameters 
in a robust way could greatly improve the overall deploy-
ability and accuracy of our framework.
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