An olive waste stream mixture, coming from a three phase-continuous centrifugation olive oil mill industry, with a typical wet basis mass composition of olive pulp 39 wt%, kernels 5 wt% and olive mill waste water 56 wt%, was subjected to hydrothermal carbonisation (HTC) at 180, 220 and 250 °C for a 3-hour residence time in a 2-litre stainless steel electrically heated batch reactor. The raw feedstock and corresponding hydrochars were characterised in terms of proximate and ultimate analyses, higher heating values and energy properties. Results showed an increase in carbonisation of samples with increasing HTC severity and an energy densification ratio up to 142% (at 250 °C). Hydrochar obtained at 250 °C was successfully pelletised using a lab scale pelletiser without binders or expensive drying procedures. Energy characterisation (HHV, TGA), ATR-FTIR analysis, fouling index evaluation and pelletisation results suggested that olive mill waste hydrochars could be used as energy dense and mechanical stable bio-fuels. Characterisation of HTC residues in terms of mineral content via induced coupled plasma optical emission spectroscopy (ICP-OES) as well as Total and Dissolved Organic Carbon enabled to evaluate their potential use as soil improvers. Nutrients and polyphenolic compounds in HTC liquid fractions were evaluated for the estimation of their potential use as liquid fertilisers. Results showed that HTC could represent a viable route for the valorisation of olive mill industry waste streams.
One stage olive mill waste streams valorisation via hydrothermal carbonisation / Volpe, Maurizio; Wüst, Dominik Julian; Merzari, Fabio; Lucian, Michela; Andreottola, Gianni; Kruse, Andrea; Fiori, Luca. - In: WASTE MANAGEMENT. - ISSN 0956-053X. - STAMPA. - 80:(2018), pp. 224-234. [10.1016/j.wasman.2018.09.021]
One stage olive mill waste streams valorisation via hydrothermal carbonisation
Maurizio Volpe;Dominik Wüst;Fabio Merzari;Michela Lucian;Gianni Andreottola;Luca Fiori
2018-01-01
Abstract
An olive waste stream mixture, coming from a three phase-continuous centrifugation olive oil mill industry, with a typical wet basis mass composition of olive pulp 39 wt%, kernels 5 wt% and olive mill waste water 56 wt%, was subjected to hydrothermal carbonisation (HTC) at 180, 220 and 250 °C for a 3-hour residence time in a 2-litre stainless steel electrically heated batch reactor. The raw feedstock and corresponding hydrochars were characterised in terms of proximate and ultimate analyses, higher heating values and energy properties. Results showed an increase in carbonisation of samples with increasing HTC severity and an energy densification ratio up to 142% (at 250 °C). Hydrochar obtained at 250 °C was successfully pelletised using a lab scale pelletiser without binders or expensive drying procedures. Energy characterisation (HHV, TGA), ATR-FTIR analysis, fouling index evaluation and pelletisation results suggested that olive mill waste hydrochars could be used as energy dense and mechanical stable bio-fuels. Characterisation of HTC residues in terms of mineral content via induced coupled plasma optical emission spectroscopy (ICP-OES) as well as Total and Dissolved Organic Carbon enabled to evaluate their potential use as soil improvers. Nutrients and polyphenolic compounds in HTC liquid fractions were evaluated for the estimation of their potential use as liquid fertilisers. Results showed that HTC could represent a viable route for the valorisation of olive mill industry waste streams.File | Dimensione | Formato | |
---|---|---|---|
2018 WM.pdf
Solo gestori archivio
Descrizione: articolo pubblicato
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.12 MB
Formato
Adobe PDF
|
1.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione