The aim of this paper is to provide and prove the most general Cauchy integral formula for slice regular functions and for C^1 functions on a real alternative *-algebra. Slice regular functions represent a generalization of the classical concept of holomorphic function of a complex variable in the noncommutative and nonassociative settings. As an application, we obtain two kinds of local series expansion for slice regular functions.

Noncommutative Cauchy integral formula / Ghiloni, R.; Perotti, A.; Recupero, V.. - In: COMPLEX ANALYSIS AND OPERATOR THEORY. - ISSN 1661-8262. - STAMPA. - 11:2(2017), pp. 289-306. [10.1007/s11785-016-0543-6]

Noncommutative Cauchy integral formula

R. Ghiloni;A. Perotti;
2017-01-01

Abstract

The aim of this paper is to provide and prove the most general Cauchy integral formula for slice regular functions and for C^1 functions on a real alternative *-algebra. Slice regular functions represent a generalization of the classical concept of holomorphic function of a complex variable in the noncommutative and nonassociative settings. As an application, we obtain two kinds of local series expansion for slice regular functions.
2017
2
Ghiloni, R.; Perotti, A.; Recupero, V.
Noncommutative Cauchy integral formula / Ghiloni, R.; Perotti, A.; Recupero, V.. - In: COMPLEX ANALYSIS AND OPERATOR THEORY. - ISSN 1661-8262. - STAMPA. - 11:2(2017), pp. 289-306. [10.1007/s11785-016-0543-6]
File in questo prodotto:
File Dimensione Formato  
NoncommCauchy_CAOT_online2016.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 559.1 kB
Formato Adobe PDF
559.1 kB Adobe PDF   Visualizza/Apri
NoncommCauchy_arXiv.pdf

accesso aperto

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 330.05 kB
Formato Adobe PDF
330.05 kB Adobe PDF Visualizza/Apri
CAOT_2017.pdf

Solo gestori archivio

Descrizione: Versione a stampa 02-2017
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 402.92 kB
Formato Adobe PDF
402.92 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/97449
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
  • OpenAlex ND
social impact