The aim of this paper is to provide and prove the most general Cauchy integral formula for slice regular functions and for C^1 functions on a real alternative *-algebra. Slice regular functions represent a generalization of the classical concept of holomorphic function of a complex variable in the noncommutative and nonassociative settings. As an application, we obtain two kinds of local series expansion for slice regular functions.
Noncommutative Cauchy integral formula / Ghiloni, R.; Perotti, A.; Recupero, V.. - In: COMPLEX ANALYSIS AND OPERATOR THEORY. - ISSN 1661-8262. - STAMPA. - 11:2(2017), pp. 289-306. [10.1007/s11785-016-0543-6]
Noncommutative Cauchy integral formula
R. Ghiloni;A. Perotti;
2017-01-01
Abstract
The aim of this paper is to provide and prove the most general Cauchy integral formula for slice regular functions and for C^1 functions on a real alternative *-algebra. Slice regular functions represent a generalization of the classical concept of holomorphic function of a complex variable in the noncommutative and nonassociative settings. As an application, we obtain two kinds of local series expansion for slice regular functions.File | Dimensione | Formato | |
---|---|---|---|
NoncommCauchy_CAOT_online2016.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
559.1 kB
Formato
Adobe PDF
|
559.1 kB | Adobe PDF | Visualizza/Apri |
NoncommCauchy_arXiv.pdf
accesso aperto
Tipologia:
Pre-print non referato (Non-refereed preprint)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
330.05 kB
Formato
Adobe PDF
|
330.05 kB | Adobe PDF | Visualizza/Apri |
CAOT_2017.pdf
Solo gestori archivio
Descrizione: Versione a stampa 02-2017
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
402.92 kB
Formato
Adobe PDF
|
402.92 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione