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Abstract. The aim of this paper is to provide and prove the most general Cauchy integral for-
mula for slice regular functions on a real alternative *-algebras, which represent a generalization
of the classical concept of holomorphic function of a complex variable in the noncommutative
and nonassociative settings.

1. Introduction

One of the main tasks in noncommutative complex analysis is the determination of the class
of functions admitting a local power series expansion at every point of their domain of definition.

Let A denote the noncommutative structure we are working with: it may be, for instance,
the skew field H of quaternions, the nonassociative division algebra O of octonions, the Clifford
algebras Rp,q, or any real alternative *-algebra. Then the noncommutative setting requires a
distinction between polynomials (and series) with left and right coefficients in A. Indeed if we
consider for instance polynomials with coefficients on the right of the indeterminate x (the left
case yields an analogous theory), then it is well known that the proper way to perform the
multiplication consists in imposing commutativity of x with the coefficients (cf. [19]). Thus if
p(x) =

∑
n x

ncn and q(x) =
∑

n x
ndn, then their product is defined by

(p ∗ q)(x) :=
∑
n

xn
( ∑
k+h=n

ckdh

)
. (1.1)

Note that this product is different from the pointwise product of p and q. This happens even
when one of the two polynomials is constant: indeed if p(x) = c0 the pointwise product is
p(x)q(x) =

∑
n c0(x

ndn), while (p ∗ q)(x) =
∑

n x
n(c0dn). In the case in which q(x) = d0 and

p(x) =
∑

n x
ndn then p(x)q(x) =

∑
n(xncn)d0 and (p ∗ q)(x) =

∑
n x

n(cnd0): nonassociativity
also plays a role.

The problem of the power series representation was solved in the quaternionic case in [8]: the
class of functions admitting a power series expansion is given by the slice regular functions. The
theory of slice regularity on the quaternionic space was introduced in [10, 11, 9] and then it was
extended to Clifford algebras and octonions in [5, 12], and to any real alternative *-algebras in
[14, 15].

The notion of slice regular function is a generalization of the classical concept of holomorphic
function of a complex variable. Let us briefly describe this notion in the simpler case in which
A is H or O. Let S be the subset of square roots of −1 and, for each J ∈ S, let CJ be the plane
generated by 1 and J . Observe that each CJ is a copy the complex plane. The quaternions
and the octonions have a “slice complex” nature, described by the following two properties:
A =

⋃
J∈SCJ and CJ ∩CK = R for every J,K ∈ S with J 6= ±K. Let D be a open subset of C

invariant under complex conjugation and let ΩD be the open subset of A obtained by rotating
D around R, i.e. ΩD =

⋃
J∈SDJ , where DJ := {ρ + σJ ∈ CJ : ρ, σ ∈ R, ρ + σi ∈ D}. A

function f : ΩD −→ A of class C1 is called slice regular if, for every J ∈ S, its restriction fJ to
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DJ is holomorphic with respect to the complex structures on DJ and on A defined by the left
multiplication by J , i.e. if ∂fJ/∂ρ+J ∂fJ/∂σ = 0 on DJ . The precise definition of slice regular
function in the most general setting of real alternative *-algebras is recalled in Section 2 below.

One of the main achievement of the theory of slice regular functions is a Cauchy-type integral
formula (see [11, 1, 15, 7, 2]), which has many consequences also in noncommutative functional
analysis (cf. [4, 6, 3, 13, 18]). Let us show it again in the case A = H or A = O. If D is bounded
and its boundary is piecewise of class C1, and f is C1 and extends to a continuous function on
the closure of ΩD in A, then for every J ∈ S it holds:

f(x) =
1

2π

∫
∂DJ

Cy(x) J−1 dy f(y)− 1

2π

∫
DJ

Cy(x) J−1 dy ∧ dy
∂f

∂y
(y) ∀x ∈ DJ , (1.2)

where the function Cy : ΩD −→ A denotes the (noncommutative) Cauchy kernel defined by

Cy(x) := (x2 − 2 Re(y)x+ |y|2)−1(y − x), x ∈ ΩD.

The two integrals in (1.2) are defined in a natural way:∫
∂DJ

Cy(x) J−1 dy f(y) :=

∫ 1

0
Cα(t)(x) J−1α′(t) f(α(t)) dt

and ∫
DJ

Cy(x) J−1 dyc ∧ dy
∂f

∂y
(y) := 2

∫
DJ

Cρ+σJ(x)
∂f

∂y
(ρ+ σJ) dρdσ,

α : [0, 1] −→ CJ being a Jordan curve parametrizing ∂DJ , and (ρ, σ) being the real coordinates
in CJ . As usual ∂f/∂y := 1

2(∂fJ/∂ρ + J∂fJ/∂σ) and the fact that the differential dy appears
on the left of f(y) depends on the noncommutativity of A. Notice that, if x and y belong to the
same CJ , and hence commute, then it turns out that Cy(x) = (y − x)−1 and we find again the
form of the classical Cauchy formula for holomorphic functions.

A drawback of formula (1.2) is that it is not a representation formula: indeed in the nonas-
sociative case it holds only for x ∈ DJ ⊆ CJ and not on the whole domain ΩD. The aim of
the present paper is to find a Cauchy integral formula, proved in Theorem 3.1 for general real
alternative ∗-algebras A, allowing to represent the values f(x) when x belongs to the whole
domain of f . In order to do this, we exploit the notion of slice product between two slice regular
functions f and g, which is recalled in Definition 2.4 below and will be denoted simply by f · g.
This product is the natural generalization to functions of the product (1.1) of polynomials and
allows us to provide the following Cauchy integral representation formula:

f(x) =
1

2π

∫
∂DJ

[
Cy ·

(
J−1 dy f(y)

)]
(x)− 1

2π

∫
DJ

[
Cy ·

(
J−1 dy ∧ dy

∂f

∂y
(y)
)]

(x) (1.3)

holding for every J ∈ S and for every x ∈ ΩD, where the parentheses are omitted in the term
J−1 dy f(y), because this product is proved to be associative. Observe that the slice product in
the integrand function of (1.3) is computed in the variable x between the function Cy and the
constant function J−1 dy f(y), y being the fixed integration variable. Therefore, denoting by ·x
the slice product performed with respect to the variable x, we can rewrite formula (1.3) in the
following more explicit way:

f(x) =
1

2π

∫
∂DJ

Cy(x) ·x
(
J−1 dy f(y)

)
− 1

2π

∫
DJ

Cy(x) ·x
(
J−1 dy ∧ dy

∂f

∂y
(y)
)

:=
1

2π

∫ 1

0

[
Cα(t) ·

(
J−1α′(t) f(α(t))

)]
(x) dt− 1

π

∫
DJ

[
Cρ+σJ ·

∂f

∂y
(ρ+ σJ)

]
(x) dρdσ

for each x ∈ ΩD.
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We observe that the Cauchy formula for slice regular functions (Corollary 3.1) can be applied
to obtain in a straightforward way the series expansion at y of a slice regular function f with
respect to slice powers gn(x) = (x−y)·n or to spherical polynomials gn(x) = Sy,n(x). This result
was achieved in [17] by a different method. The Cauchy formula (1.3) shows that, in order to
cover also the nonassociative case, in the expansion f(x) =

∑
n gn(x) · an, it is necessary to

consider the coefficients an ∈ A as constant functions and to take their slice product with the
functions gn. In the associative case, this product coincides with the pointwise product with the
coefficient an. Finally, we remark that the proof of Cauchy formula (1.3) we will give in Section
3 is new also in the associative case.

2. Preliminaries

2.1. Real alternative *-algebras. Let us assume that

A is a finite dimensional real alternative algebra with unity, (2.1)

i.e. A is a finite dimensional real algebra with unity 1A such that the mapping

(x, y, z) 7−→ (xy)z − x(yz) is alternating. (2.2)

Observe that we are not assuming that A is associative, nevertheless by Artin’s Theorem (cf.
[20]), condition (2.2) implies that

the subalgebra generated by two elements of A is associative. (2.3)

Here we assume that the real dimension of A is strictly greater than 1:

dimR(A) > 1

so that A 6= {0}, i.e. 1A 6= 0. A consequence of the bilinearity of the product in A is the formula

r(xy) = (rx)y = x(ry) ∀r ∈ R, ∀x, y ∈ A. (2.4)

Therefore if we identify R with the subalgebra generated by 1A, the notation rx is not ambiguous
if r ∈ R and x ∈ A. Notice that

rx = xr ∀r ∈ R, ∀x ∈ A. (2.5)

We also assume that A is a *-algebra, that is

A is endowed with a *-involution A −→ A : x 7−→ xc, (2.6)

i.e. a real linear mapping such that

(xc)c = x ∀x ∈ A, (2.7)

(xy)c = ycxc ∀x, y ∈ A,
xc = x ∀x ∈ R.

Summarizing the previous assumptions (2.1), (2.2), and (2.6), we say that

A is a finite dimensional real alternative *-algebra with unity . (2.8)

We will assume (2.8) in the remainder of the paper. We will endow A with the topology induced
by any norm on it as a real vector space.
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2.2. The quadratic cone.

Definition 2.1. The trace t(x) and the squared norm n(x) of any x ∈ A are defined as follows

t(x) := x+ xc, n(x) := xxc, x ∈ A.

Moreover, we define QA, the quadratic cone of A, and the set SA of square roots of −1 by:

QA := R ∪ {x ∈ A : t(x) ∈ R, n(x) ∈ R, t(x)2 − 4n(x) < 0},

SA := {J ∈ QA : J2 = −1}.
For each J ∈ SA, we denote by CJ := 〈1, J〉 the subalgebra of A generated by J . Finally, the
real part Re(x) and the imaginary part Im(x) of an element x of QA are given by

Re(x) := (x+ xc)/2, Im(x) := (x− xc)/2, x ∈ QA.

Since A is assumed to be alternative, one can prove (cf. [15, Proposition 3]) that the quadratic
cone QA has the following two properties, which describe its “slice complex” nature:

QA =
⋃
J∈SA

CJ , (2.9)

CJ ∩ CK = R ∀J,K ∈ SA, J 6= ±K. (2.10)

Two easy consequences of (2.9) are the following:

∃x−1 = n(x)−1xc ∀x ∈ QA r {0}, (2.11)

xn ∈ QA ∀x ∈ QA, ∀n ∈ N.

Observe that if J ∈ SA is fixed then

x = α+ βJ ∈ CJ , α, β ∈ R =⇒ xc = α− βJ.

In the following lemma we introduce a useful linear isomorphism between C and the subalgebra
CJ .

Lemma 2.1. If J ∈ SA, then the mapping φJ : C −→ CJ defined by

φJ(r + si) := r + sJ, r, s ∈ R,

is a complex algebra isomorphism, i.e. φJ(1) = 1 and

φJ(z1 + z2) = φJ(z1) + φJ(z2), φJ(z1z2) = φJ(z1)φJ(z2) ∀z1, z2 ∈ C. (2.12)

Moreover the product C× A −→ A : (z, x) 7−→ zx defined by

zx := φJ(z)x, z ∈ C, x ∈ A, (2.13)

makes A a complex vector space that will be denoted by AJ .

Proof. The fact that φJ is an isomorphism is an easy consequence of (2.4) and (2.5). In order
to prove that (2.13) makes A a complex vector space, we need to invoke Artin’s theorem (2.3):
indeed if x ∈ A, then J(Jx) = (JJ)x = −x, and this implies, together with a straightforward
calculation, that z1(z2x) = (z1z2)x for every z1, z2 ∈ C. The remaining axioms are trivially
satisfied. �

From Lemma 2.1 it follows that φJ(z−1) = (φJ(z))−1 for any z 6= 0, and the product of A is
commutative and associative in CJ :

x1x2 = x2x1, x1(x2x3) = (x1x2)x3 ∀x1, x2, x3 ∈ CJ ,

thus the parentheses can be omitted.
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2.3. Complexification of A. Consider now the complexification of A, i.e. the real vector space
given by the tensor product

AC := A⊗R C ' A2,

that can be described by setting 1 := (1, 0) ∈ A2 and i := (0, 1) ∈ A2, so that every v = (x, y) ∈
A2 can be uniquely written in the form v = x1 + yi = x+ yi, and i is an imaginary unit. Thus
the sum in AC reads

(x+ yi) + (x′ + y′i) = (x+ x′) + (y + y′)i.

and the product defined by

(x+ yi)(x′ + y′i) := (xx′ − yy) + (xy′ + yy′)i,

makes AC a complex alternative algebra as well, therefore AC = A+Ai = {w = x+yi : x, y ∈ A}
and i2 = −1. The complex conjugation of v = x + yi ∈ AC is defined by v̄ := x − yi. We will
also consider AC as a complex vector space, indeed one can easily infer the following lemma.

Lemma 2.2. The product C× AC −→ AC : (z, v) 7−→ zv:

(r + si)(x+ yi) := (rx− sy) + (ry + sx)i (2.14)

for z = r + si, v = x+ yi, r, s ∈ R, x, y ∈ A, makes AC a complex vector space.

Lemma 2.3. If J ∈ SA, then the mapping ΦJ : AC −→ A defined by

ΦJ(a+ bi) := a+ Jb, a, b ∈ A.
is a continuous complex vector space linear map when AC and A are endowed with the complex
structures defined by (2.14) and (2.13), respectively.

Proof. Let z = r + si ∈ C, r, s ∈ R, and v = x+ yi ∈ AC, x, y ∈ A. Recalling definitions (2.14)
and (2.13), and using (2.4), (2.5), and Artin’s theorem (2.3), we get

zΦJ(v) = (r + sJ)(x+ Jy)

= rx+ r(Jy) + (sJ)x+ (sJ)(Jy)

= rx+ J(ry + sx) + s((JJ)y)

= (rx− sy) + J(ry + sx)

= ΦJ((rx− sy) + (ry + sx)i)

= ΦJ((r + si)(x+ yi)) = ΦJ(zv).

Thus ΦJ is homogeneous. The additivity and the continuity are clear. �

2.4. Left slice functions. We are now in position to recall the notion of slice function.
Let D be a subset of C, invariant under the complex conjugation z = r + si 7−→ z = r − si,

r, s ∈ R. Define

ΩD := {r + sJ ∈ QA : r, s ∈ R, r + si ∈ D, J ∈ SA}.
A subset of QA is said to be circular if it is equal to ΩD for some set D as above.

Suppose now that D is open in C, not necessarily connected. Thanks to (2.9) and (2.10), ΩD

is a relatively open subset of QA.

Definition 2.2. A function F = F1 +F2i : D −→ AC is called stem function if F (z̄) = F (z) for
every z ∈ D. The stem function F = F1+F2i on D induces a left slice function I(F ) : ΩD −→ A
on ΩD as follows. Let x ∈ ΩD. By (2.9), there exist r, s ∈ R and J ∈ SA such that x = r + sJ .
Then we set:

I(F )(x) := F1(z) + J F2(z), where z = r + si ∈ D. (2.15)
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The reader observes that the definition of I(F ) is well-posed. In fact, if x ∈ ΩD∩R, then α =
x, y = 0 and J can be arbitrarily chosen in SA. However, F2(z) = 0 and hence I(F )(x) = F1(x),
independently from the choice of J . If x ∈ ΩA r R, then x has the following two expressions:
x = r + sJ = r + (−s)(−J), where r = Re(x), s = | Im(x)| and J = Im(x)/| Im(x)|. Anyway,
if z := r + si, we have: I(F )(r + (−s)(−J)) = F1(z) + (−J)F2(z) = F1(z) + (−J)(−F2(z)) =
F1(z) + J F2(z) = I(F )(r + sJ).

It is important to observe that every left slice function f : ΩD −→ A is induced by a unique
stem function F = F1 + F2i. In fact, it is easy to verify that, if x = r + sJ ∈ ΩD and
z = r + si ∈ D, then

F1(z) = (f(x) + f(xc))/2 and F2(z) = −J (f(x)− f(xc))/2. (2.16)

The proof of the following proposition can be found in [15, Proposition 5].

Proposition 2.1. Every left slice function is uniquely determined by its values on a plane CJ .

Let us introduce a relevant subclass of left slice functions.

Definition 2.3. Let F = F1 + F2i : D −→ AC be a stem function on D. The left slice function
f = I(F ) induced by F is said to be real if F1 and F2 are real-valued.

One can prove the following (cf. [15, Proposition 10])

Proposition 2.2. A left slice function f is real if and only if f(ΩD∩CJ) ⊆ CJ for every J ∈ SA.

In general, the pointwise product of slice functions is not a slice function. However, if F =
F1 + F2i and G = G1 +G2i are stem functions, then it is immediate to see that their pointwise
product

FG = (F1G1 − F2G2) + (F1G2 + F2G1)i

is again a stem function. In this way, we give the following definition.

Definition 2.4. Let f = I(F ) and g = I(G) be two left slice functions on ΩD. We define the
slice product f · g as the left slice function I(FG) on ΩD.

It is easy to prove the following lemma.

Lemma 2.4. Let F,G,H be stem functions such that f = I(F ), g = I(G), and h = I(H). If
f is real then (f · g) · h = f · (g · h) and f · g = fg.

In the situation of previous Lemma 2.4, we will omit the parentheses.
In the remainder of the paper, a constant function will be denote by its value: if f(x) = a ∈ A

for every x ∈ ΩD, we will write f = a.

2.5. Slice regular functions. Our next aim is to recall the concept of left slice regular function,
which generalizes the notion of holomorphic function from C to any real alternative *-algebra
like A.

Let F : D −→ AC be a stem function with components F1, F2 : D −→ A. Since we endow
A with the topology induced by any norm on it as a finite dimensional real vector space, if
z = r + si, r, s ∈ R, denotes the complex variable in C, it makes sense to consider the partial
derivatives ∂F/∂r, ∂F/∂s i, which are also stem functions.

Definition 2.5. Let F = F1 + F2i : D −→ AC be a stem function belonging to C1(D;AC) (i.e.
F1, F2 ∈ C1(D;A)). Let us denote by z = r+ si, r, s ∈ R, the complex variable in C. We define
the continuous stem functions ∂F/∂z : D −→ AC and ∂F/∂z : D −→ AC by

∂F

∂z
:=

1

2

(
∂F

∂r
− ∂F

∂s
i

)
,

∂F

∂z
:=

1

2

(
∂F

∂r
+
∂F

∂s
i

)
.
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If f = I(F ) : ΩD −→ A is a left slice function we define the continuous slice functions

∂f

∂x
:= I

(
∂F

∂z

)
,

∂f

∂xc
:= I

(
∂F

∂z

)
.

We say that f = I(F ) is left slice regular if ∂f/∂xc = 0, i.e. if

∂F1

∂r
=
∂F2

∂s
and

∂F1

∂s
= −∂F2

∂r
.

2.6. The characteristic polynomial and the Cauchy kernel. Significant examples of slice
regular functions are the polynomials with right coefficients in A, i.e. functions p : QA −→ A
of the form p(x) =

∑n
k=0 x

kck with ck ∈ A, n ∈ N. We have that p = I(P ) where P :

C −→ AC is defined by P (z) =
∑n

k=0 z
kck. Given two polynomials p(x) :=

∑n
k=0 x

kck and

q(x) :=
∑m

k=0 x
kdk, their star product p ∗ q : QA −→ A is defined by setting

(p ∗ q)(x) :=

n+m∑
j=0

xj
( ∑
k+h=j

ckdh

)
,

i.e. we impose the commutativity for the product of the variable x with the coefficients. Note
that p ∗ q is different from the pointwise product pq. Nevertheless we have the following result
(cf. [15, Proposition 12]).

Proposition 2.3. If p and q are polynomials with right coefficients in A, then

p ∗ q = p · q,

i.e. the star product is equal to the slice product.

For any y ∈ QA, the characteristic polynomial of y is the left slice regular function ∆y :
QA −→ QA defined by

∆y(x) := (x− y) · (x− yc) = x2 − xt(y) + n(y), x ∈ QA.

Observe that y ∈ CJ for some J ∈ SA, therefore the set of zeroes of ∆y is

Sy := {ξ + ηK ∈ QA : K ∈ SA, y = ξ + ηJ}

and, thanks to (2.16), (∆y(·))−1 : QA r Sy −→ QA is also a left slice function. Moreover if
x, y ∈ QA, then x ∈ CI for some I ∈ SA, thus ∆y(x) ∈ CI and we infer that

I ∈ SA, x ∈ CI =⇒ ∆y(x) ∈ CI . (2.17)

This fact, together with Proposition 2.2 and (2.11), yields

∆y : QA −→ QA and (∆y(·))−1 : QA r Sy −→ QA are real.

Hence we can define the left slice function Cy : QA r Sy −→ A by setting

Cy(x) := ∆y(x)−1(yc − x). (2.18)

Observe that, thanks to Lemma 2.4, the product (2.18) is a slice product in the variable x and

Cy(x) = (y − x)−1 ∀y, x ∈ CJ , y 6= x, y 6= xc.

We say that Cy(x) is the Cauchy kernel for left slice regular functions on A.



8 RICCARDO GHILONI, ALESSANDRO PEROTTI, AND VINCENZO RECUPERO

3. Cauchy integral formula

We are now in position to prove the general Cauchy integral representation formula for slice
functions, the natural noncommutative and nonassociative generalization of the classical complex
Cauchy integral formula:

F (z) =
1

2πi

∫
∂D

F (ζ)

ζ − z
dζ − 1

2πi

∫
D

(∂F/∂ζ)(ζ)

ζ − z
d ζ̄ ∧ dζ (3.1)

holding for F ∈ C(D;C) ∩ C1(D;C), where D ⊆ C is a bounded domain with piecewise C1

boundary. Here 1
2i d ζ̄ ∧ dζ is the 2-dimensional Lebesgue measure on C.

Theorem 3.1 (Cauchy integral formula). Let D ⊆ C be a bounded domain, J ∈ SA and
DJ := ΩD ∩CJ . Let ∂DJ denote the boundary of DJ in CJ and assume that it is piecewise C1.
If f = I(F ) : ΩD −→ A is a left slice function and F ∈ C(D;AC) ∩ C1(D;AC), then

f(x) =
1

2π

∫
∂DJ

[
Cy ·

(
J−1 dy f(y)

)]
(x)− 1

2π

∫
DJ

[
Cy ·

(
J−1 dyc ∧ dy

∂f

∂yc
(y)
)]

(x)

for every x ∈ ΩD.

Before showing the proof, some remarks are in order.

Remark 3.1.

(i) As we mentioned in the introduction, the position of the “differentials” inside integrals
of A-valued functions is important, so a rigorous definition is in order. We limit ourselves
to the integrals involved in the Cauchy formula. If a, b ∈ R, a < b, and α : [a, b] −→ CJ
is a piecewise C1 parametrization of the (counterclockwise oriented) Jordan curve ∂DJ

in the plane CJ , then∫
∂DJ

[
Cy ·

(
J−1 dy f(y)

)]
(x) :=

∫ b

a

[
Cα(t) ·

(
J−1α′(t) f(α(t))

)]
(x) dt,

α′ being the derivative of α. The second integral is simply∫
DJ

[
Cy ·

(
J−1 dyc ∧ dy

∂f

∂yc
(y)
)]

(x) :=

∫
DJ

[
C(ρ+σJ) ·

(
J−1

∂f

∂yc
(ρ+ σJ)

)]
(x) dρdσ,

(ρ, σ) being the coordinates of y in CJ = {y = ρ+ σJ : ρ, σ ∈ R}. Hence J−1

2 dyc ∧ dy
may be considered the 2-dimensional Lebesgue measure on CJ ' R2.

(ii) In the two integrand functions, the slice product · is computed with respect to the variable
x: J−1 dy f(y) and J−1 dyc ∧ dy (∂f/∂yc)(y) are here constant functions (w.r.t. x), y
being the (fixed) integration variable. Using the notation ·x for the slice product w.r.t.
x, the Cauchy formula can be written in the following way:

f(x) =
1

2π

∫
∂DJ

Cy(x) ·x
(
J−1 dy f(y)

)
− 1

2π

∫
DJ

Cy(x) ·x
(
J−1 dyc ∧ dy

∂f

∂yc
(y)
)
.

(iii) Finally there are no parentheses in the term J−1 dy f(y) = J−1α′(t) f(α(t)), because it
belongs to the subalgebra generated by J and f(y), thus, by Artin’s theorem (2.3), this
product is associative.

Proof of Theorem 3.1. Let us first prove the theorem under the assumption

x ∈ DJ , z := φ−1J (x). (3.2)

Observe that from (2.15) we get

f(φJ(w)) = ΦJ(F (w)) ∀w ∈ D, (3.3)
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∂f

∂yc
(φJ(w)) = ΦJ

(∂F
∂w

(w)
)

∀w ∈ D. (3.4)

Let γ : [0, 1] −→ C be a Jordan curve whose trace is ∂D (counterclockwise oriented) and let
(ρ, σ) denote the real coordinates of ζ = ρ+ σi ∈ C. Since F ∈ C(D;AC) ∩ C1(D;AC), we can
apply the classical vector complex Cauchy formula, which can be easily deduced from (3.1) by
means of the Hahn-Banach theorem, or simply using coordinates. We get

F (z) =
1

2πi

∫
∂D

F (ζ)

(ζ − z)
dζ − 1

2πi

∫
D

(∂F/∂ζ)(ζ)

(ζ − z)
d ζ̄ ∧ dζ

=
1

2πi

∫ 1

0
γ′(t)

F (γ(t))

γ(t)− z
dt− 1

π

∫
D

(∂F/∂ζ)(ζ)

(ζ − z)
dρdσ,

where the product by a complex scalar in the integrand functions is defined by (2.14). Thus,
recalling from Lemma 2.3 that ΦJ : AC −→ A is C-linear and continuous when AC and A are
endowed with the complex vector structures defined by (2.14) and (2.13), we get

ΦJ(F (z)) =
1

2π

∫ 1

0
ΦJ

(
γ′(t)

(γ(t)− z)i
F (γ(t))

)
dt− 1

π

∫
D

ΦJ

(
(∂F/∂ζ)(ζ)

(ζ − z)

)
dρdσ

=
1

2π

∫ 1

0

γ′(t)

(γ(t)− z)i
ΦJ(F (γ(t))) dt− 1

π

∫
D

1

ζ − z
ΦJ

(∂F
∂ζ

(ζ)
)

dρdσ

=
1

2π

∫ 1

0
φJ

(
γ′(t)

(γ(t)− z)i

)
ΦJ(F (γ(t))) dt− 1

π

∫
D
φJ

(
1

ζ − z

)
ΦJ

(∂F
∂ζ

(ζ)
)

dρdσ.

Now observe that γJ := φJ ◦γ : [0, 1] −→ CJ is a (counterclockwise oriented) parametrization of
∂DJ and that γ′J = φJ ◦ γ′. Hence, using (3.2)–(3.4), (2.12), (2.19), and Artin’s theorem (2.3),
we deduce that

f(x) = ΦJ(F (z))

=
1

2π

∫ 1

0

(
(γJ(t)− x)−1J−1γ′J(t)

)
f(γJ(t)) dt− 1

π

∫
DJ

(y − x)−1
∂f

∂yc
(y) dρdσ

=
1

2π

∫ 1

0

(
CγJ (t)(x)J−1γ′J(t)

)
f(γJ(t)) dt− 1

π

∫
DJ

Cy(x)
∂f

∂yc
(y) dρdσ

=
1

2π

∫
∂DJ

CγJ (t)(x)
(
J−1γ′J(t)f(γJ(t))

)
dt− 1

π

∫
DJ

Cy(x)
∂f

∂yc
(y) dρdσ. (3.5)

Now let us observe that if a ∈ A and y ∈ DJ , then, thanks to (2.17) and Artin’s theorem (2.3),
it follows that

(Cy · a)(x) = Cy(x)a ∀x ∈ CJ ,

where a denotes the constant function taking on the value a. Therefore from (3.5) we get

f(x) =
1

2π

∫ 1

0

[
CγJ (t) ·

(
J−1γ′J(t) f(γJ(t))

)]
(x) dt− 1

π

∫
DJ

(
Cy ·

∂f

∂yc
(y)
)

(x) dρdσ

=
1

2π

∫
∂DJ

[
Cy ·

(
J−1 dy f(y)

)]
(x)− 1

2π

∫
DJ

[
Cy ·

(
J−1 dyc ∧ dy

∂f

∂yc
(y)
)]

(x),

which proves the theorem in the case x ∈ DJ . In order to conclude, it is enough to invoke
Proposition 2.1, since f and the function on the right hand side of the previous formula are slice
functions on ΩD. �
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Corollary 3.1. Under the same assumptions of Theorem 3.1, if f is slice regular on ΩD, then

f(x) =
1

2π

∫
∂DJ

[
Cy ·

(
J−1 dy f(y)

)]
(x) =

1

2π

∫
∂DJ

Cy(x) ·x
(
J−1 dy f(y)

)
.
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