We study the case of a real homogeneous polynomial P whose minimal real and complex decompositions in terms of powers of linear forms are different. We prove that if the sum of the complex and the real ranks of P is at most 3 deg(P) − 1, then the difference of the two decompositions is completely determined either on a line or on a conic or two disjoint lines.

Real and complex rank for real symmetric tensors with low ranks / Ballico, Edoardo; Bernardi, Alessandra. - In: ALGEBRA. - ISSN 2314-4106. - STAMPA. - 2013:(2013), pp. 794054.1-794054.55. [10.1155/2013/794054]

Real and complex rank for real symmetric tensors with low ranks

Ballico, Edoardo;Bernardi, Alessandra
2013-01-01

Abstract

We study the case of a real homogeneous polynomial P whose minimal real and complex decompositions in terms of powers of linear forms are different. We prove that if the sum of the complex and the real ranks of P is at most 3 deg(P) − 1, then the difference of the two decompositions is completely determined either on a line or on a conic or two disjoint lines.
2013
Ballico, Edoardo; Bernardi, Alessandra
Real and complex rank for real symmetric tensors with low ranks / Ballico, Edoardo; Bernardi, Alessandra. - In: ALGEBRA. - ISSN 2314-4106. - STAMPA. - 2013:(2013), pp. 794054.1-794054.55. [10.1155/2013/794054]
File in questo prodotto:
File Dimensione Formato  
794054 (1).pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 521.79 kB
Formato Adobe PDF
521.79 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/97206
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact