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We study the case of a real homogeneous polynomial 𝑃 whose minimal real and complex decompositions in terms of powers of
linear forms are different. We prove that if the sum of the complex and the real ranks of 𝑃 is at most 3 deg(𝑃)−1, then the difference
of the two decompositions is completely determined either on a line or on a conic or two disjoint lines.

1. Introduction

The problem of decomposing a tensor into a minimal sum
of rank-1 terms is raising interest and attention from many
applied areas as signal processing for telecommunications [1],
independent component analysis [2], complexity of matrix
multiplication [3], complexity problem of 𝑃 versus NP [4],
quantum physics [5, 6], and phylogenetics [7]. The particular
instance in which the tensor is symmetric and hence repre-
sentable by a homogeneous polynomial is one of the most
studied and developed ones (cf. [8] and references therein).
In this last case, we say that the rank of a homogeneous
polynomial 𝑃 of degree 𝑑 is the minimum integer 𝑟 needed
to write it as a linear combination of pure powers of linear
forms 𝐿

1
, . . . , 𝐿

𝑟
:

𝑃 = 𝑐
1
𝐿
𝑑

1
+ ⋅ ⋅ ⋅ + 𝑐

𝑑
𝐿
𝑑

𝑟
, (1)

with 𝑐
𝑖
̸= 0. Most of the papers concerning the abstract theory

of the symmetric tensor rank require the base field to be
algebraically closed. In this case, we may take 𝑐

𝑖
= 1 for all

𝑖 without loss of generality. However, for the applications, it
is very important to consider the case of real polynomials
and look at their real decomposition. Namely, one can study
separately the case in which the linear forms appearing in (1)
are complex or real. In the real case we may take 𝑐

𝑖
= 1 for all

𝑖 if 𝑑 is odd, while we take 𝑐
𝑖
∈ {−1, 1} if 𝑑 is even. When we

look for a minimal complex (resp., real) decomposition as in

(1), we say that we are computing the complex symmetric rank
(resp., real symmetric rank) of 𝑃 and we will indicate it 𝑟C(𝑃)
(resp., 𝑟R(𝑃)). Obviously

𝑟C (𝑃) ≤ 𝑟R (𝑃) , (2)

and in many cases such an equality is strict.
In [9] Comon and Ottaviani studied the real case for

bivariate symmetric tensors. Even in this case, there aremany
open conjectures, and, up to now, few cases are completely
settled [9–12].

In this paper, wewant to study the relation between 𝑟C(𝑃)

and 𝑟R(𝑃) in the special circumstance in which 𝑟C(𝑃) <

𝑟R(𝑃). In particular, we will show that in a certain range (say,
𝑟C(𝑃) + 𝑟R(𝑃) ≤ 3 deg(𝑃) − 1), all homogeneous polynomials
𝑃 of that degree with 𝑟R(𝑃) ̸= 𝑟C(𝑃) are characterized by
the existence of a curve with the property that the sets
evincing the real and the complex ranks coincide out of it
(see Theorem 1 for the precise statement). More precisely, let
𝑃 ∈ 𝑆
𝑑R𝑚+1 be a real homogeneous polynomial of degree 𝑑 in

𝑚 + 1 variables such that 𝑟C(𝑃) < 𝑟R(𝑃) and 𝑟C(𝑃) + 𝑟R(𝑃) ≤
3 deg(𝑃) − 1; therefore, its real and complex decomposition
are

𝑃 = 𝑎
1
𝐿
𝑑

1
+ ⋅ ⋅ ⋅ + 𝑎

𝑘
𝐿
𝑑

𝑘
+ 𝑐
1
𝑀
𝑑

1
+ ⋅ ⋅ ⋅ + 𝑐

𝑠
𝑀
𝑑

𝑠
,

𝑃 = 𝑁
𝑑

1
+ ⋅ ⋅ ⋅ + 𝑁

𝑑

ℎ
+ 𝑐
1
𝑀
𝑑

1
+ ⋅ ⋅ ⋅ + 𝑐

𝑠
𝑀
𝑑

𝑠
,

(3)
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respectively, with 𝑘 > ℎ, 𝑎
𝑖
∈ {−1, 1}, 𝑐

𝑗
∈ {−1, 1},

𝑀
1
, . . . ,𝑀

𝑠
∈ 𝑆
1R𝑚+1, ℎ + 𝑘 > 𝑑 + 2. Moreover, there exists

a curve 𝐶 ⊂ P𝑚 such that [𝐿
1
], . . . , [𝐿

𝑘
], [𝑁
1
], . . . , [𝑁

ℎ
]

“depends only from the variables of 𝐶” and 𝐶
 is either a

line or a reduced conic or a disjoint union of two lines. If 𝐶
is a line (item (a) in Theorem 1) then both the 𝐿

𝑖
’s and the

𝑁
𝑖
’s are linear forms in the same two “variables.” If 𝐶 is a

conic, then 𝐿
𝑖
’s and 𝑁

𝑖
’s depend on 3 “variables” and their

projectivizations lie on 𝐶. See item (c) of Theorem 1 for the
geometric interpretation of the reduction of 𝐿

1
, . . . , 𝐿

𝑘
and

𝑁
1
, . . . , 𝑁

ℎ
to bivariate forms involved with 𝐶

 when 𝐶

=

𝑙 ⊔ 𝑟 is a disjoint union of two lines 𝑙 and 𝑟 (we have two sets
of bivariate forms, one for the variables of 𝑙 and one for the
variables of 𝑟).

2. Notation and Statements

Before giving the precise statement of Theorem 1 we need to
introduce the main algebraic geometric tools that we will use
all along the paper.

Let ]
𝑑

: P𝑚 → P𝑁, 𝑁 := (
𝑚+𝑑

𝑑
) − 1, denote the

degree 𝑑 Veronese embedding of P𝑚 (say, defined over C).
Set 𝑋

𝑚,𝑑
:= ]
𝑑
(P𝑚). For any 𝑃 ∈ P𝑁, the symmetric rank

or symmetric tensor rank or, just, the rank 𝑟C(𝑃) of 𝑃 is the
minimal cardinality of a finite set 𝑆 ⊂ P𝑚(C) such that
𝑃 ∈ ⟨]

𝑑
(𝑆)⟩, where ⟨ ⟩ denote the linear span (here the linear

span is with respect to complex coefficients), and we will say
that 𝑆 evinces 𝑟C(𝑃). Notice that the Veronese embedding ]

𝑑

is defined over R, that is, ]
𝑑
(P𝑚(R)) ⊂ P𝑁(R). For each

𝑃 ∈ P𝑁(R) the real symmetric rank 𝑟R(𝑃) of 𝑃 is the minimal
cardinality of a finite set 𝑆 ⊂ P𝑚(R) such that 𝑃 ∈ ⟨]

𝑑
(𝑆)⟩R,

where ⟨ ⟩R means the linear span with real coefficients, and
we will say that 𝑆 evinces 𝑟R(𝑃). The integer 𝑟R(𝑃) is well
defined because ]

𝑑
(P𝑚(R)) spans P𝑁(R).

Let us fix some notation: if 𝐶 ⊂ P𝑚 is either a curve or a
subspace and 𝑆 ⊂ P𝑚 is a finite set, we will use the following
abbreviations:

𝑆
𝐶
:= 𝑆 ∩ 𝐶,

𝑆
�̂�
:= 𝑆 \ (𝑆 ∩ 𝐶) .

(4)

Theorem 1. Let 𝑃 ∈ P𝑁(R) be such that 𝑟C(𝑃) + 𝑟R(𝑃) ≤

3𝑑 − 1 and 𝑟C(𝑃) ̸= 𝑟R(𝑃). Fix any set 𝑆C ⊂ P𝑚(C) and 𝑆R ⊂

P𝑚(R) evincing 𝑟C(𝑃) and 𝑟R(𝑃), respectively. Then one of the
following cases (a), (b), and (c) occurs.

(a) There is a line 𝑙 ⊂ P𝑚 defined over R and with the
following properties:

(i) 𝑆C and 𝑆R coincide out of the line 𝑙 in a set 𝑆
𝑙
:

𝑆C \ 𝑆C ∩ 𝑙 = 𝑆R \ 𝑆R ∩ 𝑙 =: 𝑆𝑙; (5)

(ii) there is a point 𝑃
𝑙
∈ ⟨]
𝑑
(𝑆C,𝑙)⟩ ∩ ⟨]𝑑(𝑆R,𝑙)⟩ such

that 𝑆C,𝑙 evinces 𝑟C(𝑃𝑙) and 𝑆R,𝑙 evinces 𝑟R(𝑃𝑙);
(iii) ♯(𝑆C,𝑙 ∪ 𝑆R,𝑙) ≥ 𝑑 + 2 and ♯(𝑆C,𝑙) < ♯(𝑆R,𝑙).

(b) There is a conic 𝐶 ⊂ P𝑚 defined over R and with the
following properties:

(i) 𝑆C and 𝑆R coincide out of the conic 𝐶 in a set 𝑆
�̂�
:

𝑆C \ 𝑆C,𝐶 = 𝑆R \ 𝑆R ∩ 𝐶 =: 𝑆
�̂�
; (6)

(ii) there is a point 𝑃
𝐶
∈ ⟨]
𝑑
(𝑆C,𝐶)⟩∩⟨]𝑑(𝑆R,𝐶)⟩ such

that 𝑆C,𝐶 evinces 𝑟C(𝑃𝐶) and 𝑆R,𝐶 evinces 𝑟R(𝑃𝐶);
(iii) ♯(𝑆C,𝐶 ∪ 𝑆R,𝐶) ≥ 2𝑑 + 2 and ♯(𝑆C,𝐶) < ♯(𝑆R,𝐶);
(iv) if 𝐶 is reducible, say 𝐶 = 𝑙

1
∪ 𝑙
2
with 𝑄 = 𝑙

1
∩ 𝑙
2
,

then ♯((𝑆C ∪ 𝑆R) ∩ (𝑙𝑖 \ 𝑄)) ≥ 𝑑 + 1 for 𝑖 ∈ {1, 2}.

(c) 𝑚 ≥ 3 and there are 2 disjoint lines 𝑙, 𝑟 ⊂ P𝑚 defined
over R with the following properties:

(i) 𝑆C and 𝑆R coincide out of the union Γ := 𝑙 ∪ 𝑟 in
a set 𝑆

Γ̂
:

𝑆C \ 𝑆C ∩ (𝑙 ∪ 𝑟) = 𝑆R \ 𝑆R ∩ (𝑙 ∪ 𝑟) := 𝑆Γ̂; (7)

(ii) ♯(𝑆C,𝑙 ∪ 𝑆R,𝑙) ≥ 𝑑 + 2 and ♯(𝑆C,𝑟 ∪ SR,𝑟) ≥ 𝑑 + 2;
(iii) the set ⟨]

𝑑
(𝑆
Γ̂
)⟩ ∩ ⟨]

𝑑
(Γ)⟩ is a single point, 𝑂

Γ
∈

P𝑁(R):
𝑆C,Γ evinces 𝑟C(𝑂Γ) and 𝑆R,Γ evinces 𝑂Γ;

(iv) the set ⟨{𝑂
Γ
} ∪ ]
𝑑
(𝑙)⟩ ∩ ⟨]

𝑑
(𝑙)⟩ (resp., ⟨{𝑂

Γ
} ∪

]
𝑑
(𝑟)⟩ ∩ ⟨]

𝑑
(𝑟)⟩) is formed by a unique point

𝑂
𝑙
∈ P𝑁(R) (resp. 𝑂

𝑟
∈ P𝑁(R)):

𝑆C,𝑙 (resp., 𝑆C,𝑟) evinces 𝑟C(𝑂𝑙) (resp., 𝑟C(𝑂𝑟));
𝑆R,𝑙 (resp., 𝑆R,𝑟) evinces 𝑟R(𝑂𝑙) (resp., 𝑟R(𝑂𝑟)).

3. The Proof

Remark 2. Let 𝑆 ⊂ P𝑁(R). It will be noteworthy in the sequel
that 𝑆 can be used to span both a real space ⟨𝑆⟩R ⊂ P𝑁(R)

and a complex space ⟨𝑆⟩C ⊂ P𝑁(C) of the same dimension
and ⟨𝑆⟩C ∩ P𝑁(R) = ⟨𝑆⟩R. In the following, we will always
use ⟨ ⟩ to denote ⟨ ⟩C.

Remark 3. Fix 𝑃 ∈ P𝑁 and a finite set 𝑆 ⊂ P𝑁 such that 𝑆
evinces 𝑟C(𝑃). Fix any 𝐸 ⊊ 𝑆.Then the set ⟨{𝑃}∪𝐸⟩∩⟨𝑆\𝐸⟩ is
a single point (call it𝑃

1
) and 𝑆\𝐸 evinces 𝑟C(𝑃1). Now assume

𝑃 ∈ P𝑁(R) and 𝑆 ⊂ P𝑁(R). Then 𝑃
1
∈ P𝑁(R). If 𝑆 evinces

𝑟R(𝑃), then 𝑆 \ 𝐸 evinces 𝑟R(𝑃1).

Lemma 4. Let 𝐶 ⊂ P𝑚 be a reduced curve of degree 𝑡 with
𝑡 = 1, 2. Fix finite sets 𝐴, 𝐵 ⊂ P𝑚. Fix an integer 𝑑 > 𝑡 such
that

ℎ
1
(I
(𝐴∪𝐵)

̂

𝐶

(𝑑 − 𝑡)) = 0. (8)

Assume the existence of 𝑃 ∈ ⟨]
𝑑
(𝐴)⟩ ∩ ⟨]

𝑑
(𝐵)⟩ and 𝑃 ∉

⟨]
𝑑
(𝑆

)⟩ for any 𝑆 ⊊ 𝐴 and any 𝑆 ⊊ 𝐵. Then

𝐴
�̂�
= 𝐵
�̂�
. (9)

Proof. The case 𝑡 = 1 is [13, Lemma 8]. If 𝑡 = 2, then either
𝐶 is a conic or 𝑚 ≥ 3 and 𝐶 is a disjoint union of 2 lines.
In both cases, we have ℎ0(I

𝐶
(𝑡)) > 0, and the linear system

|I
𝐶
(𝑡)| has no base points outside 𝐶. Since 𝐴 ∪ 𝐵 is a finite

set, there is𝑀 ∈ |I
𝐶
(𝑡)| such that𝑀∩(𝐴∪𝐵) = 𝐶∩(𝐴∪𝐵).
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Look at the following residual exact sequence (also called the
Castelnuovos exact sequence):

0 → I
(𝐴∪𝐵)

̂

𝐶

(𝑑 − 𝑡) → I
𝐴∪𝐵

(𝑑)

→ I
(𝐴∪𝐵)∩𝑀,𝑀

(𝑑) → 0.

(10)

We can now repeat the same proof of [13, Lemma 8] but
starting with (10) instead of the exact sequence used there (cf.
first displayed formula in the proof of [13, Lemma 8]).

We will therefore get𝐴
�̂�
= 𝐵
�̂�
. Now, since𝑀∩(𝐴∪𝐵) =

𝐶 ∩ (𝐴 ∪ 𝐵), we are done.

We are now going to proveTheorem 1.

Proof of Theorem 1. Fix 𝑃 ∈ P𝑁(R) such that 𝑟C(𝑃) + 𝑟R(𝑃) ≤
3𝑑 − 1 and 𝑟C(𝑃) ̸= 𝑟R(𝑃).

Fix any set 𝑆C ⊂ P𝑚(C) evincing 𝑟C(𝑃) and any 𝑆R ⊂

P𝑚(R) evincing 𝑟R(𝑃).
By applying [14], Lemma 4, we immediately get that

ℎ
1
(I
𝑆C∪𝑆R

(𝑑)) > 0. (11)

Since ♯(𝑆C) + ♯(𝑆R) ≤ 3𝑑 − 1, either there is a line 𝑙 ⊂ P𝑚

such that ♯(𝑆C,𝑙 ∪ 𝑆R,𝑙) ≥ 𝑑 + 2 or there is a conic 𝐶 such that
♯(𝑆C,𝐶 ∪ 𝑆R,𝐶) ≥ 2𝑑 + 2 (Theorem 3.8, [15]). We are going to
study separately these two cases in items (1) and (10) below.

(1) In this step, we assume the existence of a line 𝑙 ⊂ P𝑚

such that

♯ (𝑆C,𝑙 ∪ 𝑆R,𝑙) ≥ 𝑑 + 2. (12)

This hypothesis, together with 𝑟R(𝑃) ̸= 𝑟C(𝑃), immedi-
ately implies property (a)-(iii) of the statement of the theo-
rem.

We are now going to distinguish the case ℎ1(I
𝑆C∪𝑆R

(𝑑 −

1)) = 0 (item (1.1) below) from the case ℎ1(I
𝑆C∪𝑆R

(𝑑−1)) > 0

(item (1.2) below).
(1.1) Assume ℎ1(I

𝑆C∪𝑆R
(𝑑 − 1)) = 0.

First of all, observe that the line 𝑙 ⊂ P𝑚 is well defined
over R since it contains at least 2 points of 𝑆R (Remark 2).
Then, by Lemma 4, we have that 𝑆C and 𝑆R have to coincide
out of the line 𝑙:

𝑆C \ 𝑆C,𝑙 = 𝑆R \ 𝑆R,𝑙 := 𝑆𝑙, (13)

and this proves (a)-(i) of the statement of the theorem in this
case (1.1).

The fact that ♯(𝑆C) < ♯(𝑆R) implies that ♯(𝑆R,𝑙) > (𝑑+2)/2
and ♯(𝑆

𝑙
) ≤ 𝑑; hence, ℎ1(I

𝑆
𝑙

∪𝑙
(𝑑)) = 0.

Therefore, we have that dim(⟨]
𝑑
(𝑆
𝑙
∪ 𝑙)⟩) = ♯(𝑆

𝑙
) + 𝑑 +

1, dim(⟨]
𝑑
(𝑆
𝑙
)⟩) = ♯(𝑆

𝑙
) − 1 and dim(⟨]

𝑑
(𝑙)⟩) = 𝑑 + 1, and

Grassmann’s formula gives ⟨]
𝑑
(𝑆
𝑙
)⟩ ∩ ⟨]

𝑑
(𝑙)⟩ = 0.

Since𝑃 ∈ ⟨]
𝑑
(𝑆
𝑙
∪𝑆C)⟩ and 𝑆C,𝑙 ⊂ 𝑙, the set ⟨]𝑑(𝑆𝑙)∪{𝑃}⟩∩

⟨]
𝑑
(𝑙)⟩ is a single point, 𝑃

𝑙
∈ P𝑁(R).

Since 𝑃 ∈ ⟨]
𝑑
(𝑆C)⟩ and 𝑃 ∉ ⟨]

𝑑
(𝑆


C)⟩ for any 𝑆

⊊ 𝑆C, the

set ⟨]
𝑑
(𝑆
𝑙
) ∪ {𝑃}⟩ ∩ ⟨]

𝑑
(𝑆C,𝑙)⟩ is a single point, 𝑃𝐶 (Remark 3).

Then obviously

𝑃
𝐶
= 𝑃
𝑙
∈ P
𝑁
(R) . (14)

Since 𝑆C evinces 𝑟C(𝑃), then 𝑆C,𝑙 evinces𝑃𝑙 (Remark 3). In the
same way, we see that ⟨]

𝑑
(𝑆
𝑙
) ∪ {𝑃}⟩ ∩ ⟨]

𝑑
(𝑆R,𝑙)⟩ = {𝑃

𝑙
} and

that 𝑆R,𝑙 evinces 𝑟R(𝑃𝑙). This proves (a)-(ii) of Theorem 1 in
this case (1.1).

(1.2) Assume ℎ1(I
𝑆C∪𝑆R

(𝑑 − 1)) > 0.
First of all, observe that there exists a line 𝑟 ⊂ P𝑚 such that

♯(𝑟∩(𝑆C∪𝑆R)̂𝑙) ≥ 𝑑+1, because ♯(𝑆C∪𝑆R)̂𝑙 ≤ 3𝑑−1−𝑑−2 ≤
2(𝑑 − 1) + 1.

By the same reason, if we write 𝐶 := 𝑙 ∪ 𝑟, we get that
♯(𝑆C ∪ 𝑆R)�̂� ≤ 3𝑑 − 1 − 𝑑 − 2 − 𝑑 − 1 ≤ 𝑑 − 2 and hence
ℎ
1
(I
(𝑆C∪𝑆R)̂

𝐶

(𝑑 − 2)) = 0 (e.g., by [16], Lemma 34, or by [15],
Theorem 3.8). Lemma 4 gives

𝑆C,�̂� = 𝑆R,�̂�. (15)

Assume for the moment 𝑙 ∩ 𝑟 ̸= 0. In this case, Remark 3
indicates that we can consider case (b) of the statement of the
theorem. Therefore, (15) proves (b)-(i) in the case that the
conic 𝐶 in (b) in the statement of the theorem is reduced.
Moreover, condition (b)-(iv) is satisfied because ♯(𝑟 ∩ (𝑆C ∪
𝑆R)̂𝑙) ≥ 𝑑 + 1.

Now assume 𝑙∩𝑟 = 0.Wewill check that we are in case (a)
with respect to the line 𝑙 if ♯(𝑆C,𝑟∪𝑆R,𝑟) = 𝑑+1, while we are in
case (c) with respect to the lines 𝑙 and 𝑟 if ♯(𝑆C,𝑟∪𝑆R,𝑟) ≥ 𝑑+2,
and the case ♯(𝑆C,𝑙∪𝑆R,𝑙) = ♯(𝑆C,𝑟∪𝑆R,𝑟) = 𝑑+1 cannot occur.

Set Γ := 𝑙 ∪ 𝑟. Since 𝑟 ∩ 𝑙 = 0, we have dim⟨Γ⟩ = 3 and
hence𝑚 ≥ 3.

Assume for the moment𝑚 ≥ 4. Hence, ♯(𝑆C ∪ 𝑆R)⟨̂Γ⟩ ≤ 𝑑
and ℎ1(I

(𝑆C∪𝑆R)̂
⟨Γ⟩

(𝑑 − 1)) = 0. Therefore

𝑆
C,⟨̂Γ⟩

= 𝑆
R,⟨̂Γ⟩

, (16)

and the set ⟨{𝑃}∪ ]
𝑑
(𝑆

C,⟨̂Γ⟩
)⟩ ∩ ⟨]

𝑑
(⟨Γ⟩)⟩ is a single real point:

𝑂 := ⟨{𝑃} ∪ ]
𝑑
(𝑆

C,⟨̂Γ⟩
)⟩ ∩ ⟨]

𝑑
(⟨Γ⟩)⟩ ∈ P

𝑁
(R) , (17)

𝑆C,Γ evinces 𝑟C(𝑂) and 𝑆R,Γ evinces 𝑟R(𝑂). Now, (16) implies
that if we are either in case (a) or in case (c) of the theorem,we
can simply study what happens at 𝑆C,⟨Γ⟩ and at 𝑆R,⟨Γ⟩, which
means that we can reduce our study to the case 𝑚 = 3, since
⟨Γ⟩ = P3.

Until step (2) below, we will assume𝑚 = 3.
The linear system |I

Γ
(2)| on ⟨Γ⟩ has no base points

outside Γ itself. Since 𝑆C ∪ 𝑆R is finite, there is a smooth
quadric surface𝑊 containing Γ such that

𝑆C,𝑊 ∪ 𝑆R,𝑊 = 𝑆C,Γ ∪ 𝑆R,Γ. (18)

Moreover, such a 𝑊 can be found among the real smooth
quadrics, since 𝑙 and 𝑟 are real lines.

Since ♯(𝑆C,⟨Γ⟩∪𝑆R,⟨Γ⟩)�̂� ≤ 𝑑−1, we have ℎ1(I
(𝑆C∪𝑆R)̂

𝑊

(𝑑−

2)) = 0. Hence, Lemma 4 applied to the point 𝑂 defined in
(17) gives

(𝑆C,⟨Γ⟩)�̂�
= (𝑆R,⟨Γ⟩)�̂�

, (19)

⟨{𝑂} ∪ ]
𝑑
(𝑆C,⟨Γ,⟩)�̂�⟩ ∩ ⟨]𝑑(𝑊)⟩ is a single real point,

𝑂

= ⟨{𝑂} ∪ ]

𝑑
(𝑆C,⟨Γ,⟩)�̂�

⟩ ∩ ⟨]
𝑑
(𝑊)⟩ ∈ P

𝑁
(R) , (20)
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and 𝑆C,𝑊 evinces 𝑟C(O

). If (𝑂, 𝑆C,𝑊, 𝑆R,𝑊) is either as in

case (a) or in case (c) of the statement of the theorem, then
(𝑂, 𝑆C,⟨Γ⟩, 𝑆R,⟨Γ⟩) is in the same case. Consider the system
|(1, 0)| of lines on the smooth quadric surface𝑊 containing
Γ. We have that ℎ1(𝑊,O

𝑊
(𝑑 − 2, 𝑑)) = 0, and hence the

restrictionmap𝐻0(𝑊,O
𝑊
(𝑑)) → 𝐻

0
(Γ,O
Γ
(𝑑)) is surjective.

Therefore,

ℎ
1
(𝑊,I

𝑊∩(𝑆C∪𝑆R)
(𝑑)) = ℎ

1
(𝑙,I
𝑙∩(𝑆C∪𝑆R),𝑙

(𝑑))

+ ℎ
1
(𝑟,I
𝑟∩(𝑆C∪𝑆R),𝑟

(𝑑)) .

(21)

Now, this last equality, together with the facts that ]
𝑑
(𝑆C,𝑊)

and ]
𝑑
(𝑆R,𝑊) are linearly independent and (𝑆C ∪ 𝑆R)𝑊 ⊂ Γ,

gives

dim (⟨]
𝑑
(𝑆C,𝑊)⟩ ∩ ⟨]𝑑 (𝑆R,𝑊)⟩)

= ♯(𝑆C ∩ 𝑆R)𝑙
+ ♯(𝑆C ∩ 𝑆R)𝑟

+ ℎ
1
(𝑙,I
𝑙∩(𝑆C∪𝑆R),𝑙

(𝑑))

+ ℎ
1
(𝑟,I
𝑟∩(𝑆C∪𝑆R),𝑟

(𝑑)) .

(22)

(1.2.1) Observe that (22) implies that the case ♯(𝑆C∪𝑆R)𝑟 =
♯(𝑆C ∪ 𝑆R)𝑙 = 𝑑 + 1 cannot happen because there is no
contribution from ℎ

1
(𝑙,I
𝑙∩(𝑆C∪𝑆R),𝑙

(𝑑))+ℎ
1
(𝑟,I
𝑟∩(𝑆C∪𝑆R),𝑟

(𝑑))

since both terms, in this case, are equal to 0. So,we can assume
that at least ♯(𝑆C ∪ 𝑆R)𝑙 > 𝑑 + 1.

(1.2.2) Assume ♯(𝑆C∪𝑆R)𝑟 = 𝑑+1 and ♯(𝑆C∪𝑆R)𝑙 > 𝑑+1.
To prove that we are in case (a) with respect to 𝑙 it is

sufficient to prove 𝑆C,𝑟 = 𝑆R,𝑟.
We have dim⟨]

𝑑
(𝑆C ∪ 𝑆R)⟩ = ♯(𝑆C ∪ 𝑆R) − 1

− ℎ
1
(I
𝑆C∪𝑆R

(𝑑)). Since ]
𝑑
(𝑆C) and ]

𝑑
(𝑆R) are linearly inde-

pendent, ♯(𝑆C ∪ 𝑆R) = ♯(𝑆C) + ♯(𝑆R) − ♯(𝑆C ∩ 𝑆R), ♯(𝑆C,𝑙 ∪
𝑆R,𝑙) = ♯(𝑆C,𝑙) + ♯(𝑆R,𝑙) − ♯(𝑆C,𝑙 ∩ 𝑆R,𝑙) and ℎ

1
(I
𝑆C∪𝑆R

(𝑑)) =

ℎ
1
(𝑙,I
𝑆C,𝑙∪𝑆R,𝑙

), Grassmann’s formula gives that ⟨]
𝑑
(𝑆C)⟩ ∩

⟨]
𝑑
(𝑆R)⟩ is generated by ⟨]

𝑑
(𝑆C,𝑙)⟩ ∩ ⟨]

𝑑
(𝑆R,𝑙)⟩. Since 𝑃 ∉

⟨]
𝑑
(𝑆

)⟩ for any 𝑆⊊ 𝑆C, we get 𝑆C = 𝑆C,𝑙 ∪ (𝑆C ∩ 𝑆R)̂𝑙, that is,

𝑆
𝑙
= 𝑆R \𝑆C,𝑙. Hence, we can consider case (a), and (15) proves

property (a)-(i) also for the case (1.2) that we are treating.The
point 𝑃

𝑙
that we need to get (a)-(ii) can be identified with

the point 𝑂 defined in (20) while (a)-(iii) comes from our
hypotheses.

This gives all cases (a) of Theorem 1.
(1.2.3) Assume that both ♯(𝑆C ∪ 𝑆R)𝑟 ≥ 𝑑 + 2 and ♯(𝑆C ∪

𝑆R)𝑙 ≥ 𝑑 + 2.
We need to prove that we are in case (c). Recall that 𝑆C,Γ̂ =

𝑆R,Γ̂ and that ℎ1(I
𝑆C,̂Γ∪Γ

(𝑑)) = 0. The latter equality implies,
as in Remark 3, that ⟨{𝑃} ∪ ]

𝑑
(𝑆C,Γ)⟩ ∩ ⟨]𝑑(Γ)⟩ is a single real

point 𝑂
1
, that 𝑆C,Γ evinces 𝑟C(𝑂1), and that 𝑆R,Γ evinces 𝑂1.

Now 𝑂
1
plays the role of 𝑂

Γ
of case (c)-(iii) in Theorem 1.

Since ⟨]
𝑑
(𝑙)⟩ ∩ ⟨]

𝑑
(𝑟)⟩ = 0 and 𝑂

1
∈ ⟨]
𝑑
(Γ)⟩, the sets

⟨{𝑂
1
} ∪ ]
𝑑
(𝑙)⟩ ∩ ⟨]

𝑑
(𝑙)⟩ (resp., ⟨{𝑂

1
} ∪ ]
𝑑
(𝑟)⟩ ∩ ⟨]

𝑑
(𝑟)⟩) are

formed by a unique point 𝑂
2
(resp., 𝑂

3
). Remark 3 gives that

𝑂
𝑖
∈ P𝑁(R), 𝑖 = 1, 2, 𝑆C,𝑙 evinces 𝑟C(𝑂2), 𝑆R,𝑙 evinces 𝑟R(𝑂2),

𝑆C,𝑟 evinces 𝑟C(𝑂3), and 𝑆R,𝑟 evinces 𝑟R(𝑂3). The hypotheses
of the case (1.2.3) coincide with (c)-(ii) of the statement of
the theorem, while (15) gives also property (c)-(i). Moreover,

𝑂
2
and 𝑂

3
defined above coincide with 𝑂

𝑙
and 𝑂

𝑟
in (c)-

(iv) of Theorem 1; therefore, we have also proved case (c) of
Theorem 1.

(2) Now assume the existence of a conic𝐶 ⊂ P𝑚 such that

deg (𝑆C ∪ 𝑆R)𝐶 ≥ 2𝑑 + 2. (23)

Since ♯(𝑆C ∪ 𝑆R)𝐶 ≤ 3𝑑 − 1 − 2𝑑 − 2 ≤ 𝑑 − 1, we have
ℎ
1
(I
(𝑆C∪𝑆R)̂

𝐶

(𝑑 − 2)) = 0. By Lemma 4 we have

𝑆C,�̂� = 𝑆R,�̂�, (24)

the set ⟨{𝑃} ∪ ]
𝑑
(𝑆C,�̂�)⟩ ∩ ⟨]𝑑(⟨𝐶⟩)⟩ is a single point:

𝑃

:= ⟨{𝑃} ∪ ]

𝑑
(𝑆C,�̂�)⟩ ∩ ⟨]𝑑 (⟨𝐶⟩)⟩ , (25)

and 𝑆C,𝐶 evinces 𝑟C(𝑃

).Moreover, if𝐶 is defined overR, then

𝑃

∈ P𝑁(R) and 𝑆R,𝐶 evinces 𝑟R(𝑃


). Hence, ♯(𝑆C,𝐶) < ♯(𝑆C ∩

𝑆R).
(2.1) Assume that𝐶 is smooth.Therefore, (24) proves (b)-

(i) of the statement of the theorem in the case where 𝐶 is
smooth. Since the reduced case is proved above (immediately
after the displayed formula (15)), we have concluded the proof
of (b)-(i).

Moreover, the hypothesis (23) coincides with (b)-(iii) of
the statement of the theorem since ♯(𝑆C,𝐶) is obviously strictly
smaller than ♯(𝑆R,𝐶). This concludes (b)-(iii).

The fact that ♯(𝑆C,𝐶) < ♯(𝑆R,𝐶) also implies that ♯(𝑆R,𝐶) ≥
5. Since each point of 𝑆R is real, 𝐶 is real. Remark 3 gives that
]
𝑑
(𝑆R,𝐶) evinces 𝑟R(𝑃


). Since 𝑆R,𝐶 ⊂ 𝐶, 𝑆R,𝐶 also evinces the

real symmetric tensor rank of 𝑃 with respect to the degree
2𝑑 rational normal curve ]

𝑑
(𝐶). The point 𝑃 defined in (25)

plays the role of the point 𝑃
𝐶
appearing in (b)-(ii) of the

statement of the theorem.Therefore, we have just proved (b)-
(ii) of Theorem 1.

We treat the case (2.2) below for the sake of completeness,
butwe can observe that this concludes the proof ofTheorem 1.

(2.2) Assume that 𝐶 is reducible, say 𝐶 = 𝐿
1
∪ 𝐿
2
with 𝐿

1

and 𝐿
2
lines and ♯((𝑆C ∪ 𝑆R)𝐿

1

) ≥ ♯((𝑆C ∩ 𝑆R)𝐿
2

). If ♯((𝑆C ∪
𝑆R) ∩ (𝐿

2
\ 𝐿
2
∩ 𝐿
1
)) ≤ 𝑑, then we proved in step (1) that

we are in case (a) with respect to the line 𝐿
1
. Hence, we may

assume ♯((𝑆C ∪ 𝑆R) ∩ (𝐿
2
\ 𝐿
2
∩ 𝐿
1
)) ≥ 𝑑 + 1. Thus, even

condition (b)-(iv) is satisfied as already remarked above after
the displayed formula (15).
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