A remarkable and elementary fact that a locally compact set F of Euclidean space is a smooth manifold if (and only if) the lower and upper paratangent cones to F coincide at every point, is proved. The celebrated von Neumann’s result (1929) that a locally compact subgroup of the general linear group is a smooth manifold, is a straightforward application.

Geometric characterizations of C1 manifolds in Euclidean spaces by tangent cones

Bigolin, Francesco;Greco, Gabriele Hans
2012

Abstract

A remarkable and elementary fact that a locally compact set F of Euclidean space is a smooth manifold if (and only if) the lower and upper paratangent cones to F coincide at every point, is proved. The celebrated von Neumann’s result (1929) that a locally compact subgroup of the general linear group is a smooth manifold, is a straightforward application.
1
Bigolin, Francesco; Greco, Gabriele Hans
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11572/93276
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact