Prediction of binding sites from sequence can significantly help toward determining the function of uncharacterized proteins on a genomic scale. The task is highly challenging due to the enormous amount of alternative candidate configurations. Previous research has only considered this prediction problem starting from 3D information. When starting from sequence alone, only methods that predict the bonding state of selected residues are available. The sole exception consists of pattern-based approaches, which rely on very specific motifs and cannot be applied to discover truly novel sites. We develop new algorithmic ideas based on structured-output learning for determining transition-metal-binding sites coordinated by cysteines and histidines. The inference step (retrieving the best scoring output) is intractable for general output types (i.e., general graphs). However, under the assumption that no residue can coordinate more than one metal ion, we prove that metal binding has the algeb...

Predicting Metal-Binding Sites from Protein Sequence

Passerini, Andrea;
2012-01-01

Abstract

Prediction of binding sites from sequence can significantly help toward determining the function of uncharacterized proteins on a genomic scale. The task is highly challenging due to the enormous amount of alternative candidate configurations. Previous research has only considered this prediction problem starting from 3D information. When starting from sequence alone, only methods that predict the bonding state of selected residues are available. The sole exception consists of pattern-based approaches, which rely on very specific motifs and cannot be applied to discover truly novel sites. We develop new algorithmic ideas based on structured-output learning for determining transition-metal-binding sites coordinated by cysteines and histidines. The inference step (retrieving the best scoring output) is intractable for general output types (i.e., general graphs). However, under the assumption that no residue can coordinate more than one metal ion, we prove that metal binding has the algeb...
2012
1
Passerini, Andrea; M., Lippi; P., Frasconi
File in questo prodotto:
File Dimensione Formato  
ieeetccb11.pdf

accesso aperto

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Creative commons
Dimensione 916.77 kB
Formato Adobe PDF
916.77 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/89588
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 15
  • OpenAlex ND
social impact