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Abstract—Prediction of binding sites from sequence can significantly help toward determining the function of uncharacterized proteins

on a genomic scale. The task is highly challenging due to the enormous amount of alternative candidate configurations. Previous

research has only considered this prediction problem starting from 3D information. When starting from sequence alone, only methods

that predict the bonding state of selected residues are available. The sole exception consists of pattern-based approaches, which rely

on very specific motifs and cannot be applied to discover truly novel sites. We develop new algorithmic ideas based on structured-

output learning for determining transition-metal-binding sites coordinated by cysteines and histidines. The inference step (retrieving the

best scoring output) is intractable for general output types (i.e., general graphs). However, under the assumption that no residue can

coordinate more than one metal ion, we prove that metal binding has the algebraic structure of a matroid, allowing us to employ a very

efficient greedy algorithm. We test our predictor in a highly stringent setting where the training set consists of protein chains belonging

to SCOP folds different from the ones used for accuracy estimation. In this setting, our predictor achieves 56 percent precision and 60

percent recall in the identification of ligand-ion bonds.

Index Terms—Metal-binding prediction, machine learning, structured-output learning, greedy algorithms.

Ç

1 INTRODUCTION

METALLOPROTEINS are a large and diverse class of
proteins which are crucial for many aspects of the

cell life. Their intrinsic metal ions provide catalytic,
regulatory, or structural roles critical to protein function
[1]. Metals participate in a wide variety of biological
processes, from enzyme catalysis, as in the cases of
respiration and photosynthesis [2], to functional RNA
stabilization [3], [4], or regulation of the catalytic rate of
ribozymes [5]. Moreover, metals are implicated in many
diseases for which medicine is still seeking an effective
treatment, such as Parkinson or Alzheimer [6], and they can
also be responsible of DNA damages [7]. Knowing that a
functionally uncharacterized protein binds a metal ion in its
native conformation is thus a relevant information for
understanding its function.

In recent years, high-throughput experimental techni-

ques based on X-ray absorption spectroscopy [8], [9], [10]

proved capable of identifying metalloproteins with high

reliability. However, these techniques cannot detect the

ligands involved in binding the metal ion(s). The simplest

in-silico solution in this context is bonding state prediction, a

binary classification task where individual residues are

predicted (from sequence alone) as metal binding or not.

Bonding state prediction cannot determine whether two
residues coordinate the same metal ion but still it has been
investigated in several previous studies. The first ap-
proaches are based on regular expression mining [11]. The
drawback of using regular expressions is that they are
usually quite specific but may give a low coverage (many
false negatives). Machine learning techniques have been
recently applied to predict the metal-bonding state of
residues. Existing approaches for metal-bonding state
prediction have mainly focused on CYS only [12], CYS
and HIS binding transition metals [13], or CYS, HIS, ASP,
and GLU binding zinc ions [14], [15]. For CYS, classification
in three rather than two states can be made by introducing a
class for disulphide bridges, thus discriminating between
free, metal binding and disulphide binding [12]. Other
works have shown the usefulness of 3D information for
predicting bonding state [16]. See [17] for a detailed review
of current methods.

Knowing the metal-bonding state of residues, however,
is not sufficient to fully characterize binding sites. Many
proteins bind multiple ions and predicting the configura-
tion of the sites requires to identify the set of residues
coordinating each ion. Few recent works [18], [19], [20] have
addressed this challenging task assuming knowledge of the
protein 3D structure. This allows to complement experi-
mental evidence, by identifying apo-proteins, i.e., proteins
solved in their ion-free form, or detecting experimental
artifacts, i.e., binding of metals at adventitious sites.
However, its applicability is limited to structurally deter-
mined proteins. Our work aims at overcoming this
limitation, by predicting the configuration of metal-binding
sites from sequence information only. This would allow to
extend the applicability of the approach to tasks like:
detailed functional annotation of experimentally unsolved
proteins, e.g., characterization of active sites in enzymes,
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many of which employ metal ions as cofactors [21];
experimental determination of new metalloproteins, as the
prediction of metal-binding sites can guide the preparation
of samples for in vitro studies [22], [9]. The only approaches
[22], [23] we are aware of predicting metal-binding sites
from sequence are pattern-based ones, mining motifs such
as those recorded in the PROSITE [24] database. However,
these motifs are either very specific or very general and
cannot be effectively applied to discover novel sites. They
can nonetheless produce useful features to be used in
combination with more complex techniques, as will be
shown in our experimental results.

Predicting the configuration of metal-binding sites is an
extremely challenging task: first, the number of admissible
configurations is exponential in the number of candidate
ligands; second, the participation of a residue to a metal-
binding site should not be predicted independently from
the other residues: interdependencies between candidates
should be taken into account to form a collective prediction.
Our solution consists of a two-stage approach that takes
advantage of structured-output learning [25] at both stages.
We first predict the metal-bonding state of candidate
residues (positive cases are metal-binding residues, nega-
tive cases are the rest, including half cystines, i.e., cysteines
involved in disulphide bridges). Residues predicted as
metal bonded are then passed to the second stage which
outputs the overall configuration by grouping together
ligands predicted to bind the same ion. Note that a similar
strategy has been often used for the related but simpler
problem of disulfide connectivity prediction [26], where the
task consists of pairing each half cystine with its partner in
the sequence. We address metal-bonding state prediction as
a sequence labeling task, collectively assigning the bonding
state to all candidate ligands in the sequence. We employ
an SVM-HMM [27], a model that can be essentially
interpreted as a hidden Markov model with discrimina-
tively learned parameters. The second stage is formalized
as a link prediction task in a bipartite graph, where a ligand
node is connected to an ion node if and only if the residue
coordinates that ion. We show that the problem has
the algebraic structure of a matroid, which guarantees the
optimality of a greedy search algorithm. Intuitively,
we start from the empty structure and incrementally build
the output by adding one edge at the time. The search is
guided by a scoring function evaluating candidate struc-
tures. We adopt an online learning strategy where con-
straints derived from partial structures are sampled during
the greedy search. The greedy approach was originally
introduced in [28]. Here, we considerably extend the
method by introducing a two-stage predictor and a much
richer similarity measure between structures, resulting in
substantial performance improvements (see Section 5.1).
We also provide a deeper experimental evaluation on
highly challenging generalization tasks across Structural
Classification of Protein (SCOP) superfamilies and folds.
An online service implementing the predictor is available at
http://metaldetector.dsi.unifi.it/v2.0/.

The paper is organized as follows: in Section 2, we
provide a detailed description of the problem and motivate
the requirement for a structured-output approach. Our

proposed solution is discussed in Section 3. Section 4
describes the data sets used in the experimental evaluation
whose results are reported in Section 5. We finally draw
some conclusions in Section 6.

2 PROBLEM DESCRIPTION

Given a metalloprotein chain sequence as input, our aim is to
predict the number of bound metal ions and, for each ion, the
ligands in the sequence. This is not a full 3D characterization
of the sites geometry, with angles and distances, but rather
the prediction of the coordination relationship between ions
and their ligands. With a slight abuse of terminology, in the
rest of the paper, we will name metal-binding geometry
(MBG) the complete specification of this relationship.
Following [13], we focus on proteins binding transition
metals, which make up about 66 percent of the PDB metallo-
chains and include iron and zinc, the two most abundant
metal ions involved in cellular functioning. Transition
metals usually form coordinate covalent bonds with the
protein ligands, showing much higher binding affinities
than the electrostatic interactions typical of alkali and
alkaline earth metals. These last metals can also bind protein
backbone carbonyls, and virtually any amino acid qualifies
as a candidate ligand. On the other hand, by far the most
common transition-metal-binding residues are CYS, HIS,
ASP, GLU, covering about 92 percent ligands of the
structurally known proteins. However, ASP and GLU are
rarely found in metal-binding sites, when compared to their
natural frequency of occurrence in proteins (see Table 1). By
focusing on CYS and HIS only, we cover about 74 percent of
transition-metal ligands. Finally, for computational effi-
ciency reasons (see Section 3), we will assume that each
ligand binds exactly one ion. This is almost always the case
for CYS and HIS, while a full modeling of sites involving
ASP and GLU would probably require to admit shared
ligands.

Fig. 1 shows an example of a protein kinase C cystein-rich
domain (PDB entry 1tbn). It highlights the 3D structure of the
binding sites (top) and a graph-based representation of the
input sequence together to the desired output (bottom).
While showing a rather simple domain, the figure already
highlights the complexity of the prediction task. The number
of admissible binding configurations for a given protein
chain having n candidate ligands is the multinomial
coefficient n!

k1!k2!���km!ðn�k1�����kmÞ! where m is the number of
ions and ki the number of ligands for ion �i. In practice, each
ion is coordinated by a variable number of ligands (typically
ranging from 1 to 4, but occasionally more), and each protein
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chain binds a variable number of ions (typically ranging from
1 to 4). In the small protein of Fig. 1, if we consider CYS, HIS,
ASP, and GLU as candidate ligands, we would have 2 � 107

admissible conformations, assuming knowledge of the
number of ions and their coordination number. Restricting
candidates to CYS and HIS only still generates 9 � 104

conformations. If we consider a more complex example like
the small subunit of formate dehydrigenase (PDB code
1h0hB), with three ions coordinated by four residues each,
these numbers grow to 7 � 1015 and 5 � 1010 for CYS, HIS, ASP,
GLU and CYS, HIS candidates, respectively. The actual
search space is even larger, as during prediction we do not
know the number of ligands nor their respective coordina-
tion numbers.

Multiclass classification is not an option in such a huge
conformation space. A straightforward approach to apply
off-the-shelf predictors to this learning problem would be
that of training a pairwise classifier predicting whether two
candidate ligands actually bind the same ion. This approach
would however easily produce inconsistent predictions,
with residue pairs (A,B) and (B,C) predicted as positive and
pair (A,C) as negative, and would fail to capture the overall
relationship among the set of ligands of a certain ion.
Generalizing this strategy to triplets and quartets of
residues, up to the maximum possible coordination number
k, still requires to solve inconsistencies arising from over-
lapping sets. Furthermore, it would clearly generate an
exponential increase of the number of candidate examples.
These grow as OðknÞ with n number of candidate ligands,
and only a tiny fraction of them represents true sites,
creating a dramatically unbalanced problem. In a word, this
task has to be addressed with collective strategies, which
jointly produce an entire solution and efficiently address
the exponential size of the resulting search space.

3 METHODS

3.1 Problem Formalization

Let T denote the set of amino acids used as candidate
ligands (in our experiment, only CYS and HIS are included
in this set). To simplify presentation, we initially assume
that the bonding state of each CYS and HIS is known (see
also Section 3.7). We also assume that at most m ions are
bound to any given chain. In all our experiments, we fix
m ¼ 4, covering 97 percent of transition metals in current
PDB. Symbols associated with metal ion identifiers are
collected in the set I ¼ f�1; . . . ; �mg. The goal is to predict

the metal-binding geometry of a given chain, which can be
formally described by introducing the following binary
relation between residues and ion identifiers: coordðt; �Þ is
true if and only if residue at position t (for t ¼ 1; . . . ; T ,
where T is the chain length) coordinates ion � 2 I . We
denote by C ¼ ft : 1 � t � T; resðtÞ 2 T g the set of candidate
ligands. The task can be also expressed in a graphical
formulation. We are given a protein chain of length T and
the goal is to predict the bipartite graph ðv; yÞ with vertex
set v ¼ C [ I and edge set y � C � I . Edges connect residue
indices to ion identifiers and the MBG edge set y is a
collective truth assignment to every fact coordðt; �Þ for t ¼
1; . . . ; T and � 2 I .

The MBG problem is closely related but not equivalent to
the matching problem studied in [29] in the context of
disulfide bridge prediction. In the MBG case, more than one
edge can be incident to vertices belonging to I .

Note that in our formulation, ion identifiers are mere
placeholers and carry no information about the chemical
element or prosthetic group. Hence, any two label-iso-
morphic bipartite graphs (obtained by exchanging two
metal ion vertices) are equivalent. Outputs y should be
therefore regarded as equivalence classes of structures
(where all permutations of �1; . . . ; �m are collected in the
same class). For simplicity, we will slightly abuse notation
and avoid this distinction in the following.

3.2 Formulation as Structured-Output Prediction

One instance consists of a pair ðx; yÞ where the input
portion x contains information about the chain sequence
(possibly enriched with multiple alignment profiles) and
the output portion y is the associated MBG edge set (see
Section 4 for details on data preparation). The structured-
output prediction approach can be formulated as follows:
first, introduce a joint feature vector �xðyÞ of inputs and
outputs (this can be done explicitly or implicitly via a kernel
function as explained in Section 3.6). Second, define a linear
compatibility function between inputs and outputs as
FxðyÞ ¼ wT�xðyÞ, where w is a parameter vector to be
estimated from data (see Section 3.4). Third, obtain the
prediction fðxÞ by searching for the best configuration:

fðxÞ ¼ arg max
y2Yx

FxðyÞ; ð1Þ

where Yx is the set of admissible output configurations. A
clearer intuition can perhaps be gained by interpreting F as
a sort of negative energy for the output configuration y in
the context of x. Under this interpretation, one could define
the conditional distribution of outputs given inputs in the
form of a log-linear model: P ðY ¼ yjX ¼ xÞ ¼ 1

Zx
eFxðyÞ where

Zx is a partition function ensuring a proper probability
normalization. The solution in (1) would then retrieve the
maximum-a-posteriori (MAP ) binding geometry associated
with the protein chain represented by x. Solving the MAP
inference problem is usually the most difficult step for many
structured-output learning algorithms [25].

3.3 Greedy Inference

The exponential running time required for MAP inference
can be sometimes avoided by introducing a generative model
so that arg maxyFxðyÞ can be computed efficiently by dynamic
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Fig. 1. Protein kinase C cystein-rich domain (PDB entry 1tbn): (top) 3D
structure with binding sites highlighted; (bottom) representation of the
input sequence and the desired output as a bipartite graph.



programming. Models closely related to stochastic regular
and context-free grammars have been suggested for this
purpose [27]. These approaches work well if the generative
model matches or approximates well the domain at hand.
Unfortunately, metal binding cannot be even modeled by a
context-free grammar (as shown in Fig. 1, the metal-binding
graph has crossing edges). While we do not claim that it is
impossible to devise a suitable generative model for this task
(indeed, this is an interesting direction of research), we argue
that handling context sensitiveness is hard.

The core idea of the solution used in this paper is to
avoid an underlying generative model of structured out-
puts and cast the construction of an output structure into a
maximum weight problem that can be solved by an efficient
greedy algorithm.

In order to allow this algorithmic solution, we introduce
the following MBG assumption:

Definition 1 (MBG Property). Let Cx and I be two sets of
vertices (associated with candidate ligands and metal ion
identifiers, respectively). We say that a bipartite edge set y �
Cx � I satisfies the metal-binding geometry property if the
degree of each vertex in Cx in the graph ðCx [ I ; yÞ is at most 1.

Intuitively, this means that no residue coordinates two
different ions in any given chain. In Nature, there are of course
exceptions, the most notable being perhaps due to ASP and
GLU, which can coordinate two ions using both oxygen
atoms. However, the present study is limited to prediction
of sites coordinated by CYS and HIS only. For these two
amino acids, cases of dual coordination are rare (in the
December 2009 release of PDB, only 0.9 percent HIS and
1.6 percent CYS are found to be within 3 �A of two different
ions). As explained below, the MBG property allows us to
achieve significant computational benefits at the cost of
slightly increased error rate (in our data sets, see Section 5,
the additional prediction error rate on edges due to this
assumption is only 2 percent).

Definition 2 (Matroid). A matroid (see, e.g., [30]) is an
algebraic structureM¼ ðS;YÞ where S is a finite set and Y a
family of subsets of S such that: 1) ; 2 Y; 2) all proper subsets
of a set y in Y are in Y; and 3) if y and y0 are in Y and
jyj < jy0j, then there exists e 2 y0 n y such that y [ feg 2 Y.

Elements of Y are called independent sets. If y is an
independent set, then extðyÞ ¼ fe 2 S : y [ feg 2 Yg is
called the extension set of y. A maximal (having an empty
extension set) independent set is called a base. In a weighted
matroid, a local weight function v : S 7! IRþ assigns a
positive number vðeÞ to each element e 2 S. The weight
function allows us to compare two structures in the
following sense. A set y ¼ fe1; . . . ; eng is lexicographically
greater than set y0 if its monotonically decreasing sequence
of weights ðvðe1Þ; . . . ; vðenÞÞ is lexicographically greater than
the corresponding sequence for y0. The following classic
result (see, e.g., [30]) is the underlying support for many
greedy algorithms:

Theorem 3 (Rado 1957; Edmonds 1971). For any nonnegative
weighting over S, a lexicographically maximum base in Y
maximizes the global objective function F ðyÞ ¼

P
e2y vðeÞ.

Weighted matroids can be seen as a discrete counterpart of
concave functions: thanks to the above theorem, if M is a
weighted matroid, then the following greedy algorithm is
guaranteed to find the optimal structure, i.e., arg maxy2Y F ðyÞ:

GREEDYCONSTRUCTðM; F Þ
y ¼ ;
While extðyÞ 6¼ ;
y ¼ y [ farg maxe2extðyÞ F ðy [ fegÞg

Return y

This theory shows that if the structured-output space being
searched satisfies the property of a matroid, learning
structured outputs may be cast into the problem of learning
the objective function F for the greedy algorithm. When
following this strategy, however, we may perceive the
additive form of F as a strong limitation as it would
prescribe to predict vðeÞ independently for each part e 2 S,
while the whole point of structured-output learning is to
end up with a collective decision about which parts should
be present in the output structure. But interestingly, the
additive form of the objective function as in Theorem 3 is
not a necessary condition for the greedy optimality of
matroids. In fact, Helman et al. [31] show that the classic
theory can be generalized to so-called consistent objective
functions, i.e., functions that satisfy the following addi-
tional constraints:

F ðy [ fegÞ � F ðy [ fe0gÞ ) F ðy0 [ fegÞ � F ðy0 [ fe0gÞ ð2Þ

for any y � y0 � S and e; e0 2 S n y0.
Theorem 4 (Helman et al. 1993). If F is a consistent objective

function then, for each matroid on S, all greedy bases are
optimal.

Note that the sufficient condition of Theorem 4 is also
necessary for a slightly more general class of algebraic
structures that include matroids, called matroid embeddings
[31]. We now show that the MBG problem is a suitable
candidate for a greedy algorithmic solution.

Theorem 5. If each y 2 Yx satisfies the MBG property, then
Mx ¼ ðSx;YxÞ is a matroid.

Proof. Suppose y0 2 Yx and y � y0. Removing an edge from
y0 cannot increase the degree of any vertex in the
bipartite graph, so y 2 Yx. Also, suppose y 2 Yx,
y0 2 Yx, and jyj < jy0j. Then, there must be at least one
vertex t in x having no incident edges in y and such
that ð�; tÞ 2 y0 for some � 2 I . Therefore, y [ fð�; tÞg also
satisfies the MBG property and belongs to Yx, showing
that Mx is a matroid. tu

We can finally formulate the greedy algorithm for
constructing the structured output in the MBG problem.
Given the input x, we begin by forming the associated MBG
matroid Mx and a corresponding objective function Fx :
Yx 7! IRþ (in the next section, we will show how to learn the
objective function from data). The output structure asso-
ciated with x is then computed as

fðxÞ ¼ GREEDYCONSTRUCTðMx; FxÞ: ð3Þ

The following result immediately follows from Definition 1
and Theorem 4:
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Corollary 6. Let ðx; yÞ be an MBG instance. If Fx is a
consistent objective function and Fxðy0 [ fegÞ > Fxðy0 [
fe0gÞ for each y0 � y, e 2 extðy0Þ \ y and e0 2 extðy0Þ n y,
then GREEDYCONSTRUCTððSx;YxÞ; FxÞ returns y.

3.4 Learning the Greedy Objective Function

A data set for the MBG problem consists of pairs D ¼
fðxi; yiÞ; i ¼ 1; . . . ; Ng where xi is a protein sequence and yi
a bipartite graph. The matroid theory outlined above
directly suggests the kind of constraints that the objective
function needs to satisfy in order to minimize the empirical
error of the structured-output problem. For any input
string x and (partial) output structure y 2 Y, let FxðyÞ ¼
wT�xðyÞ, where w is a weight vector and �xðyÞ a feature
vector for ðx; yÞ. The corresponding max-margin formula-
tion is given in

min
1

2
kwk2; ð4Þ

subject to:

wT ð�xiðy0 [ fegÞ � �xiðy0 [ fe0gÞÞ � 1; ð5Þ

wT ð�xiðy00 [ fegÞ � �xiðy00 [ fe0gÞÞ � 1;

8i ¼ 1; . . . ; N; 8y0 � yi; 8e 2 extðy0Þ \ yi;
8e0 2 extðy0Þ n yi; 8y00 : y0 � y00 � Sxi ;

ð6Þ

where Sx ¼ Cx [ I is the set of possible edges between
candidate residues in x and ion identifiers. Intuitively, the
first set of constraints (5) ensures that “correct” extensions
(i.e., edges that actually belong to the target output
structure yi) receive a higher weight than “wrong” exten-
sions (i.e., edges that do not belong to the target output
structure). The purpose of the second set of constraints (6) is
to force the learned objective function to obey the
consistency property (2). These constraints are illustrated
in Fig. 2.

As with classic support vector machines, a regularized
variant with soft constraints can be formulated by introdu-
cing positive slack variables (one for each constraint) and
adding their 1-norm times a regularization coefficient C to
(4). The number of resulting constraints in the above

formulation grows exponentially with the number of edges
in each example; hence, naively solving problem (4-6) is
practically unfeasible.

3.5 Solving the Optimization Problem

Our approach seeks an approximate solution to problem
(4-5) by leveraging the efficiency of the greedy algorithm
also during learning. For this purpose, we will use an
online active learner that samples constraints chosen by
the execution of the greedy construction algorithm.

For each epoch, the algorithm maintains the current
highest scoring partial correct output y0i � yi for each
example, initialized with the empty MBG structure, where
the score is computed by the current objective function F .
While there are “unprocessed” examples in D, the algo-
rithm picks a random one and its current best MBG
structure y0. If there are no more correct extensions of y0,
then y0 ¼ yi and the example is removed from D. Otherwise,
the algorithm evaluates each correct extension of y0, updates
the current best MBG structure, and invokes the online
learner by calling ADD, which adds a constraint derived
from a random incorrect extension (see (5). It also performs
a predefined number L of lookaheads by picking a random
superset of y00 which is included in the target yi. The epoch
terminates when all examples are processed. In practice, we
found that a single epoch over the data set is sufficient for
convergence. Pseudocode for one epoch is given below,
where subroutine ADD adds an individual constraint.

Given that only a subset of the consistency constraints
is sampled, the learning algorithm is no more guaranteed
to find a consistent scoring function. In order to
compensate for this approximation, a beam search can be
introduced in the greedy procedure. Section 5.5 will show
that this modification slightly improves the performance of
the predictor.

There are several suitable online learners implementing
the interface required by the above procedure. Possible
candidates include perceptron-like or ALMA-like update
rules like those proposed in [32] for structured-output
learning. An alternative online learner is the LaSVM
algorithm [33] equipped with obvious modifications for
handling constraints between pairs of examples. LaSVM is
an SMO-like solver for the dual version of problem (4-6) that
optimizes one or two coordinates at a time, alternating
process (on newly acquired examples, generated in our case
by the ADD procedure) and reprocess (on previously seen
support vectors or patterns) steps. The ability to work
efficiently in the dual is the most appealing feature of
LaSVM in the present context and advantageous with
respect to perceptron-like approaches. Our unsuccessful
preliminary experiments with simple feature vectors con-
firmed the necessity of flexible design choices for develop-
ing rich feature spaces. Kernel methods are clearly more
attractive in this case, as detailed in the following.

3.6 The Metal-Binding Kernel

Generalizing the standard case of kernel methods for scalar
outputs, the objective function F can be rewritten using a
kernel kðz; z0Þ ¼ h�xðyÞ; �x0 ðy0Þi between two structured
instances z ¼ ðx; yÞ and z0 ¼ ðx0; y0Þ, so that FxðyÞ ¼ F ðzÞ ¼P

j �jkðz; zjÞ. Here, �j are the parameters of the model and
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Fig. 2. Illustration of constraints in (5-6). Left: target structure
(supervision) yi and a correct partial structure y0 (included in yi).
Middle: Illustration of (5). Adding a correct edge e (thick) should
increase the score more than adding an incorrect edge e0 (dashed).
Equation (5) enforces this constraint with a “large margin” requirement.
Right: Illustration of the consistency constraint of (6). If adding the e to
y0 improves F more than adding e0 to y0, then adding e to y00 (which
strictly includes y0) must also improve F more than adding e0 to y00.
This should be true for all valid edge sets y0 � y00, not only for the
substructures of the target.



zj are the input-output pairs contained in the constraints
added during the learning stage (see subroutine ADD in
Fig. 3). The kernel function k can be seen as a similarity
measure between candidate MBG structures (belonging to
the same or different chains), implicitly encoding them via
the joint feature vector �xðyÞ.

In designing a kernel for candidate MBG structures, one
has to keep in mind that structures at quite different stages
of refinement will need to be compared. These range from a
simple initial structure consisting of a single edge up to a
complete assignment of candidate ligands. A preliminary
investigation showed that imposing hard constraints on
compatibility between (partial) structures, as detailed in the
following, dramatically improved the quality of the results.

Let �iðzÞ denote the set of edges incident to an ion
identifier �i and nðzÞ the number of ion identifiers that have
at least one incident edge. A top-down definition of the
designed kernel is given in

kðz; z0Þ ¼ kglobðz; z0Þ
XnðzÞ

i¼1

Xnðz0Þ

j¼1

kmbsð�iðzÞ; �jðz0ÞÞ
nðzÞnðz0Þ ; ð7Þ

kglobðz; z0Þ ¼ �ðnðzÞ; nðz0ÞÞkminðjxj; jx0jÞktransðz; z0Þ; ð8Þ

kmbsð�iðzÞ; �jðz0ÞÞ

¼ �ðj�iðzÞj; j�jðz0ÞjÞ
Xj�iðzÞj

‘¼1

kresðxið‘Þ; x0jð‘ÞÞ;
ð9Þ

where �ða; bÞ ¼ 1 if a ¼ b and zero otherwise, xið‘Þ denotes
the ‘th residue in �iðzÞ, taken in increasing order of
sequential position in the protein, and kresðxið‘Þ; x0jð‘ÞÞ is
simply the dot product between the feature vectors
describing residues xið‘Þ and x0jð‘Þ (details on these features
are given in Section 5). kmbs measures the similarity between

individual sites (two sites are orthogonal if they have a
different number of ligands, a choice that is supported by
protein functional considerations). kglob ensures that two
structures are orthogonal unless they have the same
number of sites and downweights their similarity when
their number of candidate ligands differs (kminða; bÞ ¼
2minða; bÞ=ðaþ bÞ is a normalized minimum kernel1). ktrans

is a transition kernel measuring the similarity between
patterns of binding in terms of transitions between different
ions along the protein sequence. The geometry of metal-
binding sites can be encoded into a string s by restricting to
metal-binding residues and representing each residue with
the identifier of the ion it binds. We call a transition in such
an encoding the case in which a pair of contiguous residues
has different identifiers (i.e., bind different ions). We then
let t be a string of indicator variables, ti ¼ 1 if a transition
occurs at position i. Fig. 4 shows some examples of string
representations for known metal-binding geometries. For
1a1tA (top), the two metal-binding sites are nonoverlapping
in sequence (s ¼ 11112222), and the only transition occurs
between the last ligand of ion �1 and the first of ion �2, i.e.,
t ¼ 0001000. In the case of 1chc (bottom), the two sites
overlap (s ¼ 11221122) and there are multiple transitions:
between the second ligand of �1 and the first of �2, the
second of �2 and the first of �1, the last of �1 and the third of
�2, i.e., t ¼ 0101010. Note that the encoding is a simplified
version of the move-to-front transformation [36] widely
employed as a component of compression algorithms. Most
metal-binding geometries in our data set tend to have a
quite regular behavior in terms of number and patterns of
transitions. We developed a transition kernel aimed at
modeling these regularities:

ktransðt; t0Þ ¼ kminðLðtÞ; Lðt0ÞÞkkgramðt; t0Þ;

where LðtÞ ¼ jfi : ti ¼ 1gj. The kernel is the product of two
parts: a transition number kernel downweighting the
similarity of geometries having a different number of
transitions, and a transition pattern kernel, which is a k-gram
string kernel [37] on the transition string encoding. We used
k ¼ 2 in our experiments.

Moreover, it is well known [11] that metal-binding sites
often follow regular patterns and show regularities in their
amino acid composition (for example, motif CxxCH is very
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Fig. 4. Two examples of string encoding of metal-binding geometries. In
the case of 1a1tA (top) s ¼ 11112222 and t ¼ 0001000; in the case of
1chc (bottom) s ¼ 11221122 and t ¼ 0101010.

Fig. 3. Pseudocode for one epoch of the greedy search algorithm.

1. See, e.g., [34], pag. 318 for a proof that minða; bÞ is a valid kernel. The
normalized version we employ here corresponds to the similarity
coefficient discussed in [35]. See the case of all dichotomous variates in its
appendix for the proof of positive semidefiniteness.



frequent in heme-binding conformations). For this reason,
additional features were employed to describe the metal-
binding sites:

. A vector of Booleans b ¼ b1; . . . ; bk where bj indicates
whether the metal-binding site conformation matches
a particular motifmj, taken from a listm ¼ m1; . . . ;mk

of frequent motifs. These features are used to compute
an additional term for the global kernel defined in (8):
kmotifsðz; z0Þ ¼

Pk
j¼0ðmjðzÞmjðz0ÞÞ.

. The sequence of amino acids composing the site
(e.g., CCH, CCCC, . . . ), as well as the percentage
of CYS/HIS in the site. These features are used
within kmbs defined in (9), to add a second term:
kcompð�iðzÞ; �jðz0ÞÞ.

In the cases in which the bonding state of residues is
known (see Section 5.3), this information can be used to
produce a better similarity measure between geometries. The
overall kernel is thus multiplied by kminðjmbrðxÞj; jmbrðx0ÞjÞ
where mbrðxÞ is the set of true ligands in sequence x. The
kernel downweights the similarity of sequences having a
different number of ligands.

3.7 Bonding State Prediction

In principle, the structured-output learning approach
described so far can be easily extended to predict metal-
bonding state of CYS and HIS as a byproduct (just add a
dummy identifier �0 to I so that free residues are linked to
�0 in the output structure). However, predicting the metal-
binding geometry is considerably harder than predicting
bonding state and employing an ad hoc bonding state
predictor cascaded to the geometry predictor gives better
accuracy (see Section 5).

Support vector machines have been employed in the past
for predicting the bonding state of CYS and HIS [13], [38].
One problem with a straightforward application of SVM is
that the bonding state of different residues are predicted
independently, while the corresponding random variables
are in fact correlated. In [13], [38], the authors used a
bidirectional recurrent neural network and Viterbi decod-
ing with a simple probabilistic automaton to refine local
predictions. This allowed to obtain a collective bonding
state assignment for all CYS and HIS in a given chain,
starting from the margins predicted by a binary classifica-
tion SVM trained on individual residues. In the experiments
reported in Section 5, we use SVM-HMM [27] for the metal-
bonding state prediction. SVM-HMM is a structured-output
learning algorithm that in this context receives as input a
sequence of CYS and HIS residues (where each residue is
represented by a vector of features xt) and outputs a
sequence of binary labels corresponding to the bonding
state of all residues. The approach is genuinely collective
and takes into account correlations between bonding states
of different residues in the same chain (but chains are
assumed to be mutually independent). Compared to the
approach in MetalDetector [38], SVM-HMM offers a
simplified strategy (MetalDetector is a combination of
several models, is designed to predict also disulfide-bound
CYS, and requires a more sophisticated selection of training
examples), faster training time, and no significant penalty in
terms of prediction accuracy (see Section 5).

The feature vector xt used by SVM-HMM to predict
metal-bonding state consists of both residue and sequence
features, which are described in the following.

3.7.1 Residue Features

The set of residue features employed by SVM-HMM
consists of: 1) a profile window of 15 amino acids centered
around the target residue, with profile scores discretized
into 50 bins and represented with the unary code2 to
simulate the min-kernel: profiles were generated for each
sequence by running one iteration of PSI-BLAST on the
nonredundant (nr) NCBI data set, with an e-value cutoff of
0.005; and 2) distance separation discretized in nine bins as
in [13], with respect to previous CYS/HIS in sequence.

3.7.2 Sequence Features

The set of global sequence features consists of:

1. a global descriptor of the sequence encoding the

amino-acidic composition, each entry being com-

puted as logðN
i
j

Nj
Þ, where Ni

j is the number of occur-

rences of the jth amino acid in the ith chain, whileNj is
the number of occurrences of the jth amino acid in the

whole training set;
2. the ratio between the length of the sequence and the

average length in the data set;
3. the relative number of CYS/HIS with respect to the

sequence length;
4. the relative number of CYS/HIS with respect to the

average number of CYS/HIS in the data set; and
5. a parity bit for the number of CYS.

4 DATA PREPARATION

We performed experiments on two distinct data sets,
obtained using different criteria of redundance elimination
to select the chains. The first data set was built using
sequence similarity as the removal criterion: starting from
the data set in [13], where chains were selected using
UniqueProt [39] to remove redundancy, we discarded all
chains having metal-binding sites with residues different
from CYS and HIS, as well as few very rare cases of chains
with metal-binding sites with coordination greater than 4.
The final data set consisted of 199 metal-binding chains,
containing 1,235 HIS and 1,147 CYS. 63 percent of the
resulting chains were bonded to a zinc (Zn) ion, 8 percent to
heme (HEM/HEC) groups, 3 percent to cadmium (Cd),
8 percent to iron (Fe), 19 percent to iron-sulfur groups
(FS4,SF4,Fe/S), and 7 percent to copper (Cu).

The second data set was built using a more stringent
criterion to remove redundancy, by taking into account the
Structural Classification of Proteins hierarchy [40]: in this
case, in fact, we aim at measuring the ability of the predictor
in identifying metal-binding sites within proteins belonging
to SCOP superfamilies—or folds—which are not observed
in the training set. First, we extracted from the December
2009 release of PDB 17,783 protein chains with at least a
CYS or HIS bonded to a metal ion.3 We detected ligands

PASSERINI ET AL.: PREDICTING METAL-BINDING SITES FROM PROTEIN SEQUENCE 7

2. The unary code for the discretized score s is a vector of 50 bits, where
the first s are set to 1, and the remaining to 0.

3. We considered the same transition metals used in [13].



using a cutoff of 3 �A on the distance between the metal ion
(or complex) and the sulfur or nitrogen atoms for cysteines
and histidines, respectively. We then discarded 6,090 entries
not mapped in the 1.75 release (June 2009) of the SCOP
database. We also removed very few cases in which the
number of metal-binding sites was greater than 5. Finally,
we obtained a sequence-unique subset of 1,824 protein
chains by running CD-HIT v4.0 [41] with sequence identity
threshold set to 0.9 (default value). The data set contained
12,323 HIS and 8,290 CYS. 54 percent of the resulting chains
were bonded to zinc, 14 percent to heme groups, 7 percent
to cadmium, 7 percent to iron, 7 percent to iron-sulfur
groups, and 5 percent to copper. Following the procedure
described above, we found 122 CYS and 12 HIS coordinat-
ing multiple ions. In these cases, we kept in the data set only
the closest ligand-ion pair.

The data sets, together to the splits employed in the
validation procedures discussed further on, are available
in the Supplementary Material, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TCBB.2011.94.

5 RESULTS AND DISCUSSION

For all the experiments, we report several performance
measures:

. PB and RB indicate precision and recall for the
residue bonding state, computed as PB ¼ TP

TPþFP and
RB ¼ TP

TPþFN where TP is the number of correctly
identified metal-bonded residues, FP the number of
false positives (free residues wrongly predicted as
metal bonded), and FN the number of false
negatives (metal-bonded residues predicted as free).

. PE and RE are precision and recall for the correct
assignment between a residue and the metal ion
identifier: PE is the number of correctly predicted
coordinations, relative to the total number of
predicted coordinations, while RE is the fraction of
correctly identified coordinations over the number
of actual coordinations.

. HT and HF are true-positive and false-positive hit
rates, where a hit is counted whenever the intersec-
tion between the predicted and the actual site is
nonempty: HT is therefore the percentage of sites
having at least one correctly identified ligand, and
HF is the fraction of predicted sites having no
correctly identified residues.

In our preliminary experiments on bonding state predic-
tion, we also compared SVM-HMM against MetalDetector
[38] on the same data set of 2,727 chains (365 metalloproteins)

used in [13]. Precision and recall of MetalDetector were 73.5
and 61.6, while SVM-HMM achieves 74.3 and 59.2. We
deemed these differences too small to justify the inclusion of
a much more complex system such as MetalDetector in the
current predictor. Moreover, on that data set, SVM-HMM
correctly predicts as nonmetalloproteins 96 percent of the
2,362 chains having no metal-bonded CYS/HIS.

A lookahead L ¼ 10 and a beam search width b ¼ 2 were
employed in all the reported experiments. See Section 5.5
for a discussion on the impact of these search parameters on
the prediction accuracy.

5.1 UniqueProt-Based Data Set

As a first set of experiments on the UniqueProt-based data
set, we run 30 different train/test random splits, always in a
ratio of 80/20. Table 2 shows the results obtained by our
predictor.

On this data set, we also tested a different architecture (a
setting previously adopted in [28]), where the bonding state
assignment was jointly performed with the prediction of
metal-binding site geometry, using the dummy-ion trick
described in Section 3.7. At the same level of precision, we
observed an improvement of 20 points in bonding state
recall, using the two-stage architecture; similarly, preci-
sion/recall on edges improves from 63/52 to 68/74.

5.2 SCOP-Based Data Set

When using the SCOP-based data set, we employed a
different strategy to perform the experiments: in this case,
the goal is to measure the performance of the predictor on
SCOP superfamilies—or folds—which are not observed in
the training set. We refer to this procedure as leave-k-
superfamilies-out, or leave-k-folds-out, where folds here are
intended as SCOP hierarchy folds, and should not be
confused with folds of the standard k-fold-cross-validation
procedure. We partitioned the data set in k ¼ 10 subsets of
chains, maintaining the same average percentage of ligands
in each subset, and with the additional constraint that no
pair of chains in different subsets belonged to the same
SCOP superfamily. We also prepared a second version of
this data set, where we considered SCOP folds instead of
superfamilies: in this case, we discarded multidomain
chains, as building the partition would have been otherwise
unfeasible. This version of the data set was therefore
reduced to 1,466 chains.

Tables 3 and 4 show the results on this second data
set, including the breakdown of performance measures
for proteins binding different numbers of metal ions.
Performance measures are averaged on 10 different splits,
according to a leave-k-superfamilies-out (Table 3) or a
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TABLE 2
Results on the UniqueProt-Based Data Set
(Averaged on 30 Train/Test Random Splits)

TABLE 3
Results of Leave-K-Superfamilies-Out on the First

SCOP-Based Data Set (Including Multidomain Chains)



leave-k-folds-out (Table 4) procedure. Results are grouped
according to the number m	 of actual metal-binding sites
and N is the number of chains in each group.

The leave-k-superfamilies-out and—even more—the
leave-k-folds-out procedures ensure an extremely challen-
ging task: different superfamilies/folds often bind different
metal ions and show very different metal-binding sites
conformations, ruling out homology-based techniques.
Experiments on the SCOP-folds data set are on one hand
more challenging, since chains in training and test sets are
more “distant” within the SCOP hierarchy than in the case
of superfamilies; yet, on the other hand, the SCOP-super-
families data set also contains multidomain chains, which
are much more difficult to predict (on multidomain chains,
we obtained PB ¼ 63, RB ¼ 55, PE ¼ 57, and RE ¼ 48 to be
compared with the first row of Table 3).

In Table 5, results on the most frequent ions in the data
set are also detailed, both in the case of the SCOP-
superfamilies data set, and in the case of the SCOP-folds
data set. Heme is the group where the predictor perfor-
mance is the highest, followed by Zn and Fe/SF4. All these
cases tend to have quite regular binding patterns. For heme,
an additional advantage is the fact that most heme-bonded
chains are single domain (234 out of 258).

5.3 Results with Known Bonding State

In order to assess the accuracy of the second stage alone, we
also tested the geometry predictor starting from perfect
knowledge of bonding state (rather than using the first
stage). For the UniqueProt-based data set, we obtained
PE ¼ RE ¼ 90
 3; for the SCOP-based data set, we obtained
PE ¼ RE ¼ 89
 3 in the leave-k-superfamilies-out setting
and PE ¼ RE ¼ 75
 6 in the leave-k-folds-out setting.

5.4 Predicting the Number of Metal Ions

As a byproduct of the predicted geometry, we can obtain a
prediction m of the number m	 of metal ions bound to the
input chain. In the leave-k-folds-out setting, the prediction
accuracy, counting a correct prediction if m ¼ m	, for
m;m	 ¼ 0; . . . ; 5 was 57.0 percent. When counting a correct
prediction if jm�m	j � 1, the accuracy was 92.4 percent.

5.5 Effects of Kernels and Search Parameters

Additional experiments were run in order to observe the
impact of the search algorithm parameters and the kernel
employed on the accuracy of the predictions. With no
lookahead, in the known bonding state setting, the preci-
sion/recall on edges decreased by 1 percent, while the
training time was reduced by a factor of 6.3. Removing the
beam search had the effect of losing another 0.5 percent in

precision/recall, with the training time reduced by a half. In
the kernel used in [28], neither the transition kernel, nor
motifs/residue features were employed: in those condi-
tions, the precision/recall on edges in the known bonding
state setting decreased by 2 percent, other search para-
meters being equal (no beam search was used in [28]).

6 CONCLUSIONS

Prediction of metal-binding geometry was never attempted
before starting from protein sequence alone. The approach
presented in this paper is based on structured-output
learning, with a novel inference algorithm that exploits a
reasonable assumption (ligands coordinate a single metal
ion) to achieve computational efficiency using a greedy
algorithm. As expected, results strongly depend on the
nonredundancy criteria used to define the learning task:
generalization across SCOP folds is far more difficult than
that across sequentially distant proteins. A careful design of
the discriminant features, encoded in the kernel between
candidate geometries, is crucial to the quality of results. We
expect that further research in this direction can provide a
major contribution in tackling this extremely challenging
learning task.

Our results assuming known bonding state show that
this knowledge allows to substantially improve the
prediction of metal-binding sites. The overall quality of
the predictions can significantly benefit from advance-
ments in predicting bonding state. From this viewpoint,
relational discriminative learning techniques, which jointly
provide labeling for a set of entities exploiting their
relations, are a promising direction for automatic annota-
tion of protein sequences, as our results on SVM-HMM
seem to suggest.

Finally, we currently ignored the protein quaternary
structure in our experiments. A number of metal-binding
sites lie at the protein interface, with the ion(s) coordinated
by ligands from multiple chains. We leave the handling of
these cases as a direction for further research.
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