We study a deterministic model for the dynamics of a population infected by macroparasites. The model consists of an infinite system of partial differential equations, with initial and boundary conditions; the system is transformed in an abstract Cauchy problem on a suitable Banach space, and existence and uniqueness of the solution are obtained through multiplicative perturbation of a linear C0-semigroup. Positivity and boundedness are proved using the specific form of the equations.

Well-posedness of an infinite system of partial differential equations modelling parasitic infection in an age-structured host

Pugliese, Andrea;Tonetto, Lorenza
2003-01-01

Abstract

We study a deterministic model for the dynamics of a population infected by macroparasites. The model consists of an infinite system of partial differential equations, with initial and boundary conditions; the system is transformed in an abstract Cauchy problem on a suitable Banach space, and existence and uniqueness of the solution are obtained through multiplicative perturbation of a linear C0-semigroup. Positivity and boundedness are proved using the specific form of the equations.
2003
Pugliese, Andrea; Tonetto, Lorenza
File in questo prodotto:
File Dimensione Formato  
Lorenza1.pdf

accesso aperto

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 606.9 kB
Formato Adobe PDF
606.9 kB Adobe PDF Visualizza/Apri
1-s2.0-S0022247X03002956-main.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 172.3 kB
Formato Adobe PDF
172.3 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/74079
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact