This paper presents a novel predictive coding scheme for image-data compression by vector quantization (VQ). On the basis of a prediction, further compression is achieved by using a dynamic codebook-reordering strategy that allows a more efficient Huffman encoding of vector addresses. The proposed method is lossless, for it increases the compression performances of a baseline vector quantization scheme, without causing any further image degradation. Results are presented and a comparison with Cache-VQ is made. © 1996 IEEE.

DCRVQ: A New Strategy for Efficient Entropy Coding of Vector Quantized Images

De Natale, Francesco;
1996-01-01

Abstract

This paper presents a novel predictive coding scheme for image-data compression by vector quantization (VQ). On the basis of a prediction, further compression is achieved by using a dynamic codebook-reordering strategy that allows a more efficient Huffman encoding of vector addresses. The proposed method is lossless, for it increases the compression performances of a baseline vector quantization scheme, without causing any further image degradation. Results are presented and a comparison with Cache-VQ is made. © 1996 IEEE.
1996
6
De Natale, Francesco; S., Fioravanti; D. D., Giusto
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/71530
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact