We employ partitioning methods, in the spirit of Montiel–Ros but here recast for general actions of compact Lie groups, to prove effective lower bounds on the Morse index of certain families of closed minimal hypersurfaces in the round four-dimensional sphere, and of free boundary minimal hypersurfaces in the Euclidean four-dimensional ball. Our analysis reveals, in particular, phenomena of linear index growth for sequences of minimal hypersurfaces of fixed topological type, in strong contrast to the three-dimensional scenario.

Index growth not imputable to topology / Carlotto, Alessandro; Schulz, Mario; Wiygul, David. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - 153:4(2025), pp. 1787-1801. [10.1090/proc/17151]

Index growth not imputable to topology

Carlotto, Alessandro;Schulz, Mario;Wiygul, David
2025-01-01

Abstract

We employ partitioning methods, in the spirit of Montiel–Ros but here recast for general actions of compact Lie groups, to prove effective lower bounds on the Morse index of certain families of closed minimal hypersurfaces in the round four-dimensional sphere, and of free boundary minimal hypersurfaces in the Euclidean four-dimensional ball. Our analysis reveals, in particular, phenomena of linear index growth for sequences of minimal hypersurfaces of fixed topological type, in strong contrast to the three-dimensional scenario.
2025
4
Carlotto, Alessandro; Schulz, Mario; Wiygul, David
Index growth not imputable to topology / Carlotto, Alessandro; Schulz, Mario; Wiygul, David. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - 153:4(2025), pp. 1787-1801. [10.1090/proc/17151]
File in questo prodotto:
File Dimensione Formato  
proc17151.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 256 kB
Formato Adobe PDF
256 kB Adobe PDF   Visualizza/Apri
2407.11147v2.pdf

accesso aperto

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Creative commons
Dimensione 239.81 kB
Formato Adobe PDF
239.81 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/447930
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact