Denote by G(k, n) the Grassmannian of linear subspaces of dimension k in P n. We show that if ϕ : G(l, n) → G(k, n) is a nonconstant morphism and l 6= 0, n − 1 then l = k or l = n − k − 1 and ϕ is an isomorphism.
Morphisms between Grassmannians, II / Occhetta, Gianluca; Tondelli, Eugenia. - In: ARCHIV DER MATHEMATIK. - ISSN 0003-889X. - 2024, 122:5(2024), pp. 521-529. [10.1007/s00013-024-01986-y]
Morphisms between Grassmannians, II
Occhetta, Gianluca
;
2024-01-01
Abstract
Denote by G(k, n) the Grassmannian of linear subspaces of dimension k in P n. We show that if ϕ : G(l, n) → G(k, n) is a nonconstant morphism and l 6= 0, n − 1 then l = k or l = n − k − 1 and ϕ is an isomorphism.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s00013-024-01986-y.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
298.77 kB
Formato
Adobe PDF
|
298.77 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione