Denote by G(k, n) the Grassmannian of linear subspaces of dimension k in P n. We show that if ϕ : G(l, n) → G(k, n) is a nonconstant morphism and l 6= 0, n − 1 then l = k or l = n − k − 1 and ϕ is an isomorphism.

Morphisms between Grassmannians, II / Occhetta, Gianluca; Tondelli, Eugenia. - In: ARCHIV DER MATHEMATIK. - ISSN 0003-889X. - 2024, 122:5(2024), pp. 521-529. [10.1007/s00013-024-01986-y]

Morphisms between Grassmannians, II

Occhetta, Gianluca
;
2024-01-01

Abstract

Denote by G(k, n) the Grassmannian of linear subspaces of dimension k in P n. We show that if ϕ : G(l, n) → G(k, n) is a nonconstant morphism and l 6= 0, n − 1 then l = k or l = n − k − 1 and ϕ is an isomorphism.
2024
5
Occhetta, Gianluca; Tondelli, Eugenia
Morphisms between Grassmannians, II / Occhetta, Gianluca; Tondelli, Eugenia. - In: ARCHIV DER MATHEMATIK. - ISSN 0003-889X. - 2024, 122:5(2024), pp. 521-529. [10.1007/s00013-024-01986-y]
File in questo prodotto:
File Dimensione Formato  
s00013-024-01986-y.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 298.77 kB
Formato Adobe PDF
298.77 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/437931
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact