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Morphisms between Grassmannians, II
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Abstract. Denote by G(k, n) the Grassmannian of linear subspaces of
dimension k in P

n. We show that if ϕ : G(l, n) → G(k, n) is a nonconstant
morphism and l �= 0, n − 1, then l = k or l = n − k − 1 and ϕ is an
isomorphism.
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1. Introduction. In [10], Tango proved that there are no nonconstant mor-
phisms from P

m to the Grassmannian G(k, n) if m > n, and later, in [11], con-
sidered the case m = n, proving the same result for kn even, (k, n) �= (2, 5),
k �∈ {0, n − 1}. The result in [10] has been generalized in [8] to the case of
morphisms ϕ : G(l,m) → G(k, n), with m > n, and later to a more general
setting (see Theorem 2.3 and references therein).

The aim of the present paper is to generalize the results in [11], considering
morphisms G(l, n) → G(k, n), and proving the following:

Theorem 1.1 If ϕ : G(l, n) → G(k, n) is a nonconstant morphism and l �=
0, n − 1, then l = k or l = n − k − 1 and ϕ is an isomorphism.

In a nutshell, the idea in [8,10] to prove the constancy of a morphism
ϕ : M → G(k, n) was to consider the relation among Chern classes coming
from the universal sequence on G(k, n), pull it back via ϕ, and show that this
leads to a contradiction, via a study of the Chow ring A•(M).

In [7], this idea was refined and reinterpreted geometrically, considering the
Schubert varieties XH ,Xp ⊂ G(k, n), parametrizing linear spaces contained in
a hyperplane H or passing through a point p; then [XH ] ∈ Ak+1(G(k, n)),
[Xp] ∈ An−k(G(k, n)), and clearly [XH ] · [Xp] = 0. If the pullback via ϕ of one
of the two cycles is zero, one can construct a morphism from M to a smaller
Grassmannian which factors via ϕ, allowing inductive arguments. Else, one
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obtains two effective nonzero cycles whose product is zero in An+1(M). The
proof can then be finished by showing that there are no such pairs in A•(M).
This is the idea that led to the notion of effective good divisibility of a variety
(see Sect. 2.1).

The last step of the above argument could be further refined: in fact, it is
enough to show that for every effective nonzero x ∈ Ak+1(M), y ∈ An−k(M),
it holds x·y �= 0. We fulfill this task, in our setup, by characterizing the pairs of
effective nonzero cycles of total codimension n+1 in A•(G(l, n)) whose product
is zero, called maximal disjoint pairs (Corollary 3.3). In particular, for G(l, n),
such a pair consists of cycles of codimensions l + 1 and n − l, forcing l = k
or n − k − 1 in order for ϕ : G(l, n) → G(k, n) to be nonconstant. In these
cases, we conclude that ϕ is an isomorphism using a Remmert-Van de Ven
type theorem for rational homogeneous varieties due to Hwang and Mok ([6,
Main Theorem]).

2. Preliminaries.

2.1. Effective good divisibility. The notion of effective good divisibility of a
smooth complex projective variety M (see [7, Section 2.1]) is related to the
total codimension of effective zero divisors in the Chow ring A•(M).

Definition 2.1 The effective good divisibility of M , denoted by e.d.(M), is the
maximum integer s such that, given effective cycles xi ∈ Ai(M), xj ∈ Aj(M)
with i + j ≤ s and xixj = 0, then either xi = 0 or xj = 0.

Example 2.2 The effective good divisibility is known for the wide class of ra-
tional homogeneous manifolds: it was computed for Grassmannians in [8],
for varieties of classical type independently in [5,7], for varieties of excep-
tional type in [5]. In this paper, we are mostly interested in Grassmanni-
ans G(k, n), parametrizing linear subspaces of dimension k in P

n, for which
e.d.(G(k, n)) = n.

Knowledge of the effective good divisibility can be used to prove the non
existence of nonconstant morphisms, as exemplified by the following result.

Theorem 2.3 (cf. [7, Theorem 1.3], [5, Theorem 1.4]). Let M be a smooth
complex projective variety, and let M ′ be a rational homogeneous manifold of
classical type such that e.d.(M) > e.d.(M ′). Then there are no nonconstant
morphisms from M to M ′.

In order to prove the nonexistence of nonconstant morphisms between two
Grassmannians G(l, n) and G(k, n), which have the same effective good divis-
ibility, we need to characterize the pairs of effective zero divisors (xi, xj) of
minimal total codimension i + j; they have been introduced in [7, Definition
2.3]. In the definition given below, we consider also the type of the pair, which
keeps track of the codimensions of xi and xj .

Definition 2.4 A (non-ordered) pair {xi, xj} with xi ∈ Ai(M), xj ∈ Aj(M)
nonzero effective cycles such that xixj = 0 and i + j = e.d.(M) + 1 will be
called a maximal disjoint pair (md-pair for short) of type {i, j} in M .
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We will prove Theorem 1.1 using the fact that two nonisomorphic Grass-
mannians G(l, n) and G(k, n) do not possess md-pairs of the same type, so
we review in the next subsection basic facts about the generators of the Chow
ring A•(G(k, n)).

2.2. Schubert varieties. We will recall some basic facts about Schubert calcu-
lus in G(k, n). We refer to [2,3] for the proofs and for a complete account on
the subject.

Let us identify G(k, n) with the Grassmannian G(k + 1, V ) of vector sub-
spaces of dimension k + 1 in a vector space V of dimension n + 1 and consider
a complete flag V of vectors subspaces of V :

0 � V1 � V2 � · · · � Vn � V.

Given a sequence of integers I = {0 < i1 < · · · < ik+1 ≤ n + 1}, called a
Schubert symbol, we define the Schubert variety XI as

XI = {W ∈ G(k + 1, V ) |dim(Vij ∩ W ) ≥ j for all j}. (1)

To the Schubert variety XI one can associate a Young diagram λI in the
following way: consider a rectangle with k +1 rows and n−k columns and the
path from the lower-left corner to the upper-right corner consisting of n + 1
steps, where the i-th step is vertical if i ∈ I and horizontal if i �∈ I. The Young
diagram is the part of the rectangle that is top-left of this path.

Identifying the Young diagram λI with the partition (λ1, . . . , λk+1), where
λi is the number of boxes in row i, we have

n − k ≥ λ1 ≥ λ2 ≥ · · · ≥ λk+1 ≥ 0 and λj = ik+2−j − (k + 2 − j).

By abuse, we denote by λI also the corresponding partition (λ1, . . . , λk+1),
and we set |I| := |λI | =

∑
λi; this number is the dimension of the subvariety

XI .
The Bruhat order on the set of Schubert symbols is defined as follows: I ≤ L

if and only if ij ≤ lj for every j = 1, . . . , n + 1. Notice that I ≤ L if and only
if the Young diagram of I is a subdiagram of the Young diagram of L.

The class [XI ] ∈ A•(G(k, n)) does not depend on the choice of the flag
V, and will be called a Schubert cycle. The Schubert cycles form a basis of
A•(G(k, n)).

Example 2.5 Let H = P(Vn); the Schubert variety XH := XIH , corresponding
to the Schubert symbol IH = {n−k < n−k+1 < · · · < n} parametrizes (k+1)-
dimensional subspaces of Vn, or equivalently k-dimensional linear subspaces of
P(V ) contained in H = P(Vn). The associated Young diagram λIH is the
diagram whose partition is (n − k − 1, . . . , n − k − 1).

Let p = P(V1); the Schubert variety Xp := XIp , corresponding to the
Schubert symbol Ip = {1 < n − k + 2 < · · · < n < n + 1}, parametrizes
(k+1)-dimensional subspaces of V containing V1, or equivalently k-dimensional
linear subspaces of P(V ) containing p. The associated Young diagram λIp is
the diagram whose partition is (n − k, . . . , n − k, 0). Let us show the diagrams
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λIH and λIp for n = 6, k = 2.

λIH = λIp =

A dual description of Schubert varieties, which highlights the codimension
of the variety rather than the dimension, is possible. Given a Schubert symbol
I = {0 < i1 < · · · < ik+1 ≤ n + 1}, the dual Schubert symbol is defined by
setting I∨ = {n + 2 − ik+1 < · · · < n + 2 − i1}. The associated Young diagram
corresponds to the partition (λ∨

1 , . . . , λ∨
k+1), where

λ∨
j = n + 2 − ij − (k + 2 − j) = n − k − λk+2−j . (2)

In particular, the diagram λI∨ is obtained from the diagram λI by taking the
complement and rotating it by 180◦. Since |λI | + |λI∨ | = (k + 1)(n − k) =
dim G(k, n), we see that |I∨| = |λI∨ | = codim XI .

Example 2.6 Let Ip and IH be the Schubert symbols introduced in Example
2.5. Then the Young diagram of λI∨

H
corresponds to the partition (1, . . . , 1),

while the one of λI∨
p

corresponds to the partition (n − k, 0, . . . , 0). Again, we
show the diagrams for the case n = 6, k = 2.

λI∨
H

= λI∨
p

=

Given a Schubert index I, we define the opposite Schubert variety XI to
be w0XI∨ , where w0 is the longest element of the Weyl group of GL(n+1, C),
which acts on the canonical basis as w0(ei) = en+1−i. Clearly we have an
equality of cycles [XI ] = [XI∨ ] ∈ A|I|(G(k, n)).

We are going to use the following well-known fact [1, Section 1.3 and Propo-
sition 1.3.2] or [9, Lemma 3.1 (3)]:

Proposition 2.7 The intersection of a Schubert variety XJ and an opposite
Schubert variety XI is nonempty if and only if I ≤ J . This is the case if and
only if the intersection product [XI ] · [XJ ] is nonzero.

Example 2.8 Let IH and Ip be as in Example 2.5. Clearly, recalling the geo-
metric descriptions of XIH and XIp , we have that [XIH ] · [XIp ] = 0, but we can
obtain this also using Proposition 2.7 since I∨

H �≤ Ip (and dually I∨
p �≤ IH).

I∨
H �≤ Ip :

∗
I∨
p �≤ IH :

∗
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3. Md-pairs in Grassmannians. In this section, we will show that the only
md-pair for G(k, n), 1 ≤ k ≤ n−2, is essentially the one described in Example
2.5; let us start by considering md-pairs whose elements are Schubert cycles.

Theorem 3.1 In the Grassmannian G(k, n), with 1 ≤ k ≤ n − 2, let XI ,XJ be
Schubert varieties with codim(XI) + codim(XJ ) ≤ n + 1. Then [XI ] · [XJ ] = 0
if and only if {I, J} = {IH , Ip}.
Proof Since [XI ] = [XI∨

], by Proposition 2.7, we know that [XI ] · [XJ ] �= 0 if
and only if I∨ ≤ J . This in turn happens if and only if the Young diagram of
I∨ is contained in the Young diagram of J , i.e., the associated partitions λI∨

and μJ satisfy λ∨
i ≤ μi for 1 ≤ i ≤ k + 1. Note that the assumption on the

codimensions can be rewritten as

|λI∨ | + (dim G(k, n) − |μJ |) ≤ n + 1

which can be restated as

|λI∨ | ≤ |μJ | − k(n − k) + (k + 1). (3)

Now, from Proposition 3.2 below, we get (λI∨ , μJ ) = ((n − k, 0, . . . , 0), (n −
k − 1, . . . , n − k − 1)) or ((1, . . . , 1), (n − k, . . . , n − k, 0)) and from Example
2.5, we obtain the statement. �

Proposition 3.2 Given integers n, k such that 1 ≤ k ≤ n − 2, let λ and μ be
two partitions such that

n − k ≥ λ1 ≥ · · · ≥ λk+1 ≥ 0, n − k ≥ μ1 ≥ · · · ≥ μk+1 ≥ 0, (4)

and

|λ| ≤ |μ| − k(n − k) + (k + 1). (5)

Then λ �≤ μ if and only if λ = (n − k, 0, . . . , 0), μ = (n − k − 1, . . . , n − k − 1)
or λ = (1, . . . , 1), μ = (n − k, . . . , n − k, 0).

Proof In order to have λ �≤ μ, we must have λh+1 > μh+1 for some h ∈
{0, . . . , k}. We write λh+1 = μh+1 + m for some positive integer m; let us
distinguish two cases: h > 0 or h = 0.
h = 0

Using the inequalities (4), we see that

|μ| − λ1 ≤ kμ1 − m = kλ1 − (k + 1)m ≤ k(n − k) − (k + 1)m, (6)

hence, using (5), we obtain

0 ≤
∑

j≥2

λj = |λ| − λ1 ≤ (k + 1)(1 − m), (7)

forcing m = 1 and λj = 0 for j ≥ 2. Moreover, all inequalities in (6) and (7)
are equalities. In particular,

∑

j≥2

μj − 1 = |μ| − λ1 = k(n − k − 1) − 1
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so that μj = n−k−1 for every j ≥ 2. Now, since μ2 ≤ μ1 < λ1 ≤ n−k, we get
μ1 = n−k−1 and λ1 = n−k (Note that here we are using the assumption k ≥
1). We have thus proved that λ = (n−k, 0, . . . , 0), μ = (n−k−1, . . . , n−k−1).

h > 0

We use inequalities (4) to obtain
∑

j>h+1

μj ≤ (k − h)μh+1 ≤ (k − h)(n − k − m) and
∑

j≤h

μj ≤ h(n − k).

Combining the two inequalities, we get

|μ| − λh+1 ≤ −(k − h + 1)m + k(n − k). (8)

Now, from (5), we obtain

|λ| − λh+1 ≤ −(k − h + 1)m + k + 1 = hm + (k + 1)(1 − m). (9)

On the other hand, using again (4), we get

|λ| − λh+1 ≥
∑

j≤h

λj ≥ hλh+1 ≥ hm. (10)

Combining (9) and (10), we obtain that m = 1; moreover equality holds
everywhere in (8), (9), and (10). In particular,

λh+1 = 1, |μ| = k(n − k) − (k − h), and |λ| = h + 1. (11)

Since λh+1 = 1, we have μh+1 = 0, hence μj = 0 for j ≥ h + 1. Then

|μ| =
∑

j≤h

μj ≤ h(n − k),

which, combined with (11), recalling that k ≤ n−2, gives h = k and μj = n−k
for every j ≤ k, so μ = (n − k, . . . , n − k, 0). By (11), we have |λ| = k + 1.
Recalling that λj ≤ λk+1 = 1 for every j, we conclude that λ = (1, . . . , 1). �

We can now describe the md-pairs of G(k, n).

Corollary 3.3 Let k, n be integers such that 1 ≤ k ≤ n − 2, and let [Γ] ∈
Ai(G(k, n)), [Δ] ∈ Aj(G(k, n)) be effective nonzero cycles such that [Γ]·[Δ] = 0
and i + j ≤ n + 1. Then {[Γ], [Δ]} = {a[XH ], b[Xp]} with XH and Xp as in
Example 2.5. In particular, all the md-pairs in G(k, n) have type {k+1, n−k}.
Proof By [4, Corollary of Theorem 1], the cones of effective classes of a fixed
codimension in G(k, n) are polyhedral cones generated by the Schubert classes
of the same codimension. Therefore we can write [Γ] and [Δ] as linear combi-
nations with nonnegative coefficients:

[Γ] =
∑

|K∨|=i

γK [XK ], [Δ] =
∑

|L∨|=j

δL[XL].

Moreover, every product [XK ] · [XL] is a combination of Schubert cycles with
nonnegative coefficients due to the Littlewood–Richardson rule. Then, if γKδL �=
0, we must have [XK ] · [XL] = 0, and the statement now follows from Theorem
3.1. �
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4. Morphisms to Grassmannians. In this section, we will prove Theorem 1.1.
We state and prove first two auxiliary results that could be useful to study
morphisms to Grassmannians from other kinds of varieties.

Lemma 4.1 Let k, n be integers such that 1 ≤ k ≤ n − 2, and let Y ⊂ G(k, n)
be a positive dimensional closed irreducible subvariety. Then:

• If [Y ]·[XH ] = 0, there is a nonconstant morphism ψ : Y → G(k−1, n−1).
• If [Y ] · [Xp] = 0, there is a nonconstant morphism ψ : Y → G(k, n − 1).

Proof In the first case, for a general hyperplane H ′, Y does not meet the
subvariety XH′ ⊂ G(k, n) parametrizing linear spaces contained in H ′. We
can take ψ to be the restriction to Y of the morphism πH : G(k, n)\XH′ →
G(k − 1, n − 1), which sends Λ to Λ ∩ H ′. Since the fibers of this morphism
are affine (see [7, Example 5.5]), we get that ψ is not constant.

The argument in the second case is similar: for a general point q ∈ P
n,

Y does not meet the subvariety Xq ⊂ G(k, n) parametrizing linear spaces
passing through q. We can take ψ to be the restriction to Y of the morphism
πq : G(k, n) \ Xq → G(k, n − 1), which sends Λ to the linear projection of Λ
from q to a hyperplane. Again the fibers of this morphism are affine and ψ is
not constant. �

Proposition 4.2 Let k, n be integers such that 1 ≤ k ≤ n − 2 and let M be a
smooth variety with e.d.(M) = n in which there is no md-pair of type {k +
1, n − k}. Then every morphism ϕ : M → G(k, n) is constant.

Proof Let [XH ], [Xp] ∈ A•(G(k, n)) be as in Example 2.5. For general g, g′ ∈
GL(n+1, C), gXH and g′Xp are disjoint and generically transverse to ϕ, that
is, ϕ−1(gXH), ϕ−1(g′Xp) are generically reduced and of the same codimensions
as XH ,Xp ⊂ X (see [2, Theorem 1.7]).

By [2, Theorem 1.23], we have that ϕ∗[XH ] = [ϕ−1(gXH)] ∈ Ak+1(M) and
ϕ∗[Xp] = [ϕ−1(g′Xp)] ∈ An−k(M). In particular,

codim ϕ∗[XH ] + codim ϕ∗[Xp] = n + 1 = e.d.(M) + 1

and ϕ∗[XH ] · ϕ∗[Xp] = 0. By assumption, (ϕ∗[XH ], ϕ∗[Xp]) cannot be an md-
pair for M , so one of the two cycles is zero.

If ϕ were not constant, by Lemma 4.1, we would get a nonconstant mor-
phism ψ◦ϕ from M to G(k−1, n−1) or G(k, n−1), contradicting [8, Proposition
2.4]. �

Proof of Theorem 1.1 Since the Picard number of G(l, n) is one, a nonconstant
morphism must be finite. In fact, if this were not the case, the pullback of an
ample line bundle on the image will be ample on G(l, n), but trivial on the
contracted curves, contradicting Kleiman’s criterion. If k = 0, n − 1, we then
have a morphism ϕ : G(l, n) → P

n which is constant since dim G(l, n) > n.
Else, by Proposition 4.2, if ϕ is not constant, then l = k or n − k − 1. In this
case, since the dimensions of the domain and the codomain are equal, ϕ must
be surjective. We conclude that ϕ is an isomorphism by [6, Main Theorem].

�
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within the CRUI-CARE Agreement.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Brion, M.: Lectures on the geometry of flag varieties. In: Topics in Cohomological

Studies of Algebraic Varieties, pp. 33–85. Trends Math., Birkhäuser, Basel (2005)
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[7] Muñoz, R., Occhetta, G., Solá Conde, L.E.: Maximal disjoint Schubert cycles in

rational homogeneous varieties. Math. Nachr. 297(1), 174–194 (2024)

[8] Naldi, A., Occhetta, G.: Morphisms between Grassmannians. Proc. Japan Acad.

Ser. A Math. Sci 98(10), 101–105 (2022)

[9] Richardson, R.W.: Intersections of double cosets in algebraic groups. Indag.

Math. (N.S.) 3(1), 69–77 (1992)

[10] Tango, H.: On (n−1)-dimensional projective spaces contained in the Grassmann

variety Gr(n, 1). J. Math. Kyoto Univ. 14, 415–460 (1974)

[11] Tango, H.: On morphisms from projective space Pn to the Grassmann variety

Gr(n, d). J. Math. Kyoto Univ. 16, 201–207 (1976)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Vol. 122 (2024) Morphisms between Grassmannians, II 529

Gianluca Occhetta and Eugenia Tondelli

Dipartimento di Matematica
Università di Trento
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