Achieving specific mechanical properties of hydrogels, especially when used as thin films, can be crucial in diverse applications, including tissue engineering and bioelectronics. Here, a novel electrochemical approach for fabricating uniform and robust hydrogel films based on carboxymethyl cellulose cross-linked by Fe3+ ions (Fe-CMC), exhibiting tunable, dynamic properties is introduced. High modulation of the mechanical properties of the film is achieved by applying multiple electrochemical pulses of oxidative voltage during hydrogel deposition. Our study shows also a remarkable effect of the ionic strength on the properties of the electrodeposited hydrogel films. We found that switching from a salt solution to water enhanced the stiffness of the hydrogels, thereby regulating the permeability of the films. These results are supported by molecular dynamics (MD) simulations, showing that an increase in the ionic strength induces a weakening of the Fe-CMC interactions, ultimately affecting the network strength. Finally, the robustness of these electrodeposited hydrogel films enables their delamination from the electrode without any damage, thereby expanding their potential applications as freestanding smart membranes. By providing fundamental insights into the dynamics of metal-coordinated bonds and their response at the macroscopic scale, we have demonstrated the versatility of electrochemical gelation for the fabrication of robust hydrogel films with tunable mechanical properties, which could serve as smart platforms for a variety of biomedical applications.

Mechanically Adaptive Metal-Coordinated Electrogel Membranes / Baretta, R.; Gabrielli, V.; Missale, E.; Badocco, D.; Speranza, G.; Pantano, M. F.; Ferrarini, A.; Frasconi, M.. - In: ACS APPLIED MATERIALS & INTERFACES. - ISSN 1944-8244. - 2024:16(2024), pp. 48280-48292. [10.1021/acsami.4c09740]

Mechanically Adaptive Metal-Coordinated Electrogel Membranes

Missale E.;Pantano M. F.;
2024-01-01

Abstract

Achieving specific mechanical properties of hydrogels, especially when used as thin films, can be crucial in diverse applications, including tissue engineering and bioelectronics. Here, a novel electrochemical approach for fabricating uniform and robust hydrogel films based on carboxymethyl cellulose cross-linked by Fe3+ ions (Fe-CMC), exhibiting tunable, dynamic properties is introduced. High modulation of the mechanical properties of the film is achieved by applying multiple electrochemical pulses of oxidative voltage during hydrogel deposition. Our study shows also a remarkable effect of the ionic strength on the properties of the electrodeposited hydrogel films. We found that switching from a salt solution to water enhanced the stiffness of the hydrogels, thereby regulating the permeability of the films. These results are supported by molecular dynamics (MD) simulations, showing that an increase in the ionic strength induces a weakening of the Fe-CMC interactions, ultimately affecting the network strength. Finally, the robustness of these electrodeposited hydrogel films enables their delamination from the electrode without any damage, thereby expanding their potential applications as freestanding smart membranes. By providing fundamental insights into the dynamics of metal-coordinated bonds and their response at the macroscopic scale, we have demonstrated the versatility of electrochemical gelation for the fabrication of robust hydrogel films with tunable mechanical properties, which could serve as smart platforms for a variety of biomedical applications.
2024
16
Baretta, R.; Gabrielli, V.; Missale, E.; Badocco, D.; Speranza, G.; Pantano, M. F.; Ferrarini, A.; Frasconi, M.
Mechanically Adaptive Metal-Coordinated Electrogel Membranes / Baretta, R.; Gabrielli, V.; Missale, E.; Badocco, D.; Speranza, G.; Pantano, M. F.; Ferrarini, A.; Frasconi, M.. - In: ACS APPLIED MATERIALS & INTERFACES. - ISSN 1944-8244. - 2024:16(2024), pp. 48280-48292. [10.1021/acsami.4c09740]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/426990
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact