This paper deals with high order Whitney forms. We define a canonical isomorphism between two sets of degrees of freedom. This allows to geometrically localize the classical degrees of freedom, the moments, over the elements of a simplicial mesh. With such a localization, it is thus possible to associate, even with moments, a graph structure relating a field with its potential.

Weights for moments’ geometrical localization: a canonical isomorphism / Alonso Rodríguez, Ana; Camaño, Jessika; De Los Santos, Eduardo; Rapetti, Francesca. - In: ADVANCES IN COMPUTATIONAL MATHEMATICS. - ISSN 1572-9044. - 50:4(2024), pp. 8601-8634. [10.1007/s10444-024-10183-y]

Weights for moments’ geometrical localization: a canonical isomorphism

Alonso Rodríguez, Ana
;
De Los Santos, Eduardo;Rapetti, Francesca
2024-01-01

Abstract

This paper deals with high order Whitney forms. We define a canonical isomorphism between two sets of degrees of freedom. This allows to geometrically localize the classical degrees of freedom, the moments, over the elements of a simplicial mesh. With such a localization, it is thus possible to associate, even with moments, a graph structure relating a field with its potential.
2024
4
Alonso Rodríguez, Ana; Camaño, Jessika; De Los Santos, Eduardo; Rapetti, Francesca
Weights for moments’ geometrical localization: a canonical isomorphism / Alonso Rodríguez, Ana; Camaño, Jessika; De Los Santos, Eduardo; Rapetti, Francesca. - In: ADVANCES IN COMPUTATIONAL MATHEMATICS. - ISSN 1572-9044. - 50:4(2024), pp. 8601-8634. [10.1007/s10444-024-10183-y]
File in questo prodotto:
File Dimensione Formato  
s10444-024-10183-y.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 969.24 kB
Formato Adobe PDF
969.24 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/424870
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact