
Advances in Computational Mathematics (2024) 50:86
https://doi.org/10.1007/s10444-024-10183-y

Weights for moments’ geometrical localization: a canonical
isomorphism

Ana Alonso Rodríguez1 · Jessika Camaño2 · Eduardo De Los Santos3 ·
Francesca Rapetti4

© The Author(s) 2024

Abstract
This paper deals with high order Whitney forms. We define a canonical isomorphism
between two sets of degrees of freedom. This allows to geometrically localize the
classical degrees of freedom, the moments, over the elements of a simplicial mesh.
With such a localization, it is thus possible to associate, even with moments, a graph
structure relating a field with its potential.
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1 Introduction

The finite element (FE) method is a well-established technique to numerically solve
partial differential equations [12]. One key aspect of FEmethods is the construction of
finite dimensional spaces able to provide an approximated and physically meaningful
solution to the considered PDE. Suitable examples of FE spaces have been proposed
to deal with differential operators such as the gradient, the curl, and the divergence. As
an example, Raviart-Thomas and Brezzi-Douglas-Marini div-conforming FEs [9, 24]
became popular for problems in fluid dynamics and Nédélec curl-conforming ones
[19, 20] were widely adopted in electromagnetism (for further examples, see [10, 14,
18]). All these successful FEs can be unified in the finite element exterior calculus
framework where physical fields are treated as instances of differential forms [4–6,
13]. In addition to the shape functions of a FE space, we must specify the degrees of
freedom (DoFs) we adopt to reconstruct fields in that space. These are a unisolvent
set of functionals on the shape functions. The construction of DoFs for higher order
Whitney space of k-forms P−

r+1Λ
k is classically based on moments [13] associated

with a face of some dimension q with q ≥ k. DoFs determine inter element continuity
and provide interpolation operators, projections, which are defined at least for smooth
fields. Moments pop up naturally from integration-by-part formulas, which thus gives
a way to reconstruct differential operators and potentials.

By adopting a geometrical point of view similar to the one of Whitney in [26], new
DoFs have been proposed in [22] for the interpolation of fields in the FE spaces of
trimmed polynomial forms of arbitrary degree r ≥ 1 on simplices. These new DoFs,
called weights, are integrals of the field, intended as a differential k-form, on some
small faces of dimension only q = k, being k the degree of the form. They have a
clear physical interpretation, such as circulations along curves, fluxes across surfaces,
densities in volumes, depending on the value of k. Their combinatorial and accuracy
properties have been largely analyzed, see, for example, [1, 3, 11]. They have been
defined also for spaces of complete polynomials (see [27] for an example in 2D) and
on tensor product ones, as presented in [17].

For k = 0, that is, we deal with a scalar field, when r ≥ 1, weights are evaluations
of 0-forms at some points in the FEs. We can say that weights generalize to k > 0 the
idea of r -version of Lagrangian finite elements to other (e.g., Nédélec and Raviart-
Thomas) finite elements. For r = 1, that is, we deal with low order polynomial
approximations, weights, and moments coincide, whatever is the degree k of the form.
Thus, a natural question arises. What happens when the polynomial degree r of the
k-form is greater than 1? In other words, is there a connection between these two sets
of DoFs when r > 1, for any k? The answer is yes, and in this contribution, we develop
this connection (see Fig. 1, where k = 1 and the polynomial degree is 3).

In particular, we present an isomorphism between these two sets of DoFs, the
weights and the moments, for the FE spaces of trimmed polynomial k-forms of arbi-
trary degree r ≥ 1 on simplices. By means of this isomorphism, we can underline
the physical, geometrical, and analytical aspects hidden in the definition of moments
and weights. Moreover, with an appropriate selection of the discrete space bases for
k = 0, 1, the matrix which represents the gradient operator is the same with both sets
of DoFs to reconstruct a field from its potential.
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Fig. 1 Correspondence between two sets of DoFs forP−
3 Λ1(T ) in a tetrahedron T . Center, the visualization

of symbols referring to the distribution of edge-type (in a circle), of face-type (in a square), and of volume-
type (in a diamond) moments as given in the periodic table of FEs for N1e3 (courtesy of D. Arnold). Right
and left, coded with the same symbol, the small edges supporting the corresponding weights

The paper is structured as follows. After the introduction of classical notations for
the spaces of differential polynomial k-forms on a simplex T in Section 2, we explore
the definition of weights and moments in Section 3. The isomorphism is detailed in
Section 4. The matrix representing the exterior derivative operator working between
0- and 1-forms, in both cases of weights and moments, is analyzed in Section 5. Some
concluding remarks end this contribution.

2 Notation and basic tools

The notation and theoretical results are illustrated by several examples. For the sake
of clarity, we use the symbol �� (resp. �) to close a proof (resp., an example).

2.1 Increasing sequences andmulti-index

Let j , l, m, and n be integers such that 0 ≤ l − j ≤ n − m. By Σ( j : l,m : n), we
denote the set of increasing maps from { j, . . . , l} to {m, . . . , n}, that is,

Σ( j : l,m : n) = {σ : { j, . . . , l} −→ {m, . . . , n} : σ( j) < σ( j+1) < · · · < σ(l)}.

For a map σ ∈ Σ( j : l,m : n), [[σ ]] will indicate its range, i.e.,

[[σ ]] = {σ(i) : i ∈ { j, . . . , l}} ⊂ {m, . . . , n}.

We use multi-index notation and consider the sets

I(d + 1, r) := {α = (α0, . . . , αd) ∈ N
d+1 : |α| = r},
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being |α| = ∑d
i=0 αi . For amulti-index α ∈ I(d+1, r), [[α]]will stand for the support

of α defined as the set

[[α]] = {i : αi > 0} ⊂ {0, . . . , d},

and we denote 
α� the minimal element of [[α]].
Let S be a subset of {0, . . . , d} and #S its cardinality. By eS , we denote the (unique)

multi-index in I(d + 1, #S) such that [[eS]] = S. The sum of multi-indexes of the
same length is defined in the natural way: if α ∈ I(d + 1, r) and β ∈ I(d + 1, r ′),
then α + β ∈ I(d + 1, r + r ′) and (α + β)i = αi + βi for i = 0, . . . , d.

Example 1 If σ ∈ Σ(0 : d, 0 : n), with d ≤ n, then [[σ ]] is a subset of {0, 1, . . . , n}
with #[[σ ]] = d + 1. Then, e[[σ ]] ∈ I(n + 1, d + 1) is the multi-index with entries

(e[[σ ]])i =
{
1 if i ∈ [[σ ]]
0 otherwise.

For anyα ∈ I(n+1, r), themulti-index α̃ ∈ I(n+1, r+d+1) given by α̃ = α+e[[σ ]]
has entries

α̃i =
{

αi + 1 if i ∈ [[σ ]]
αi otherwise,

respectively. ��
Given σ ∈ Σ(0 : d, 0 : n), the matrix Eσ ∈ Z

(d+1)×(n+1), with entries

(Eσ )i, j =
{
1 if j − 1 = σ(i − 1)
0 otherwise,

(1)

allows to extend a multi-index β ∈ I(d + 1, r) to a multi-index α ∈ I(n + 1, r)
by setting α = β Eσ . It is worth noting that [[β Eσ ]] ⊂ [[σ ]], hence in particular
(β Eσ )i = 0 if 0 ≤ i < σ(0).

Furthermore, the matrix E
σ ∈ Z

(n+1)×(d+1) allows to restrict a multi-index α ∈
I(n+1, r) to amulti-indexβ ∈ I(d+1, r̃), with r̃ ≤ r , by identifying anymulti-index
with a row vector, and setting β = αE

σ . We notice that

Eσ E
σ = I ∈ Z

(d+1)×(d+1),

whereas for α ∈ I(n + 1, r), we have

αE
σ Eσ = α if and only if [[α]] ⊂ [[σ ]]. (2)

Example 2 If σ ∈ Σ(0 : 1, 0 : 3) has [[σ ]] = {1, 3}, the associated matrix Eσ ∈ Z
2×4

is Eσ =
[
0 1 0 0
0 0 0 1

]

. If (β0, β1) ∈ I(2, r), then we get

(α0, α1, α2, α3) = (β0, β1)Eσ = (0, β0, 0, β1) ∈ I(4, r).
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It holds that ασ( j) = β j , whereas αi = 0 if i /∈ [[σ ]]. Reciprocally, if (α0, α1, α2, α3) ∈
I(4, r), then

(β0, β1) = (α0, α1, α2, α3)E

σ = (α1, α3) ∈ I(2, r̃).

In this case, r̃ ≤ r . ��

2.2 Simplices and barycentric coordinates

Let T ⊂ R
n be an n-simplex with vertices x0, x1, . . . , xn in general position. We let

Δk(T ) be the set of subsimplices of T of dimension k, for any selected value of k
between 0 and n, and Δ(T ) = ∪kΔk(T ).

For each σ ∈ Σ( j : l, 0 : n), we let fσ be the (oriented) closed convex hull of
the vertices xσ( j), . . . , xσ(l) which we henceforth denote by fσ = [xσ( j), . . . , xσ(l)].
There is a one-to-one correspondence between Δk(T ) and Σ(0 : k, 0 : n).

LetPr (T ) denote the space of polynomials in n variables of degree at most r . In the
following, λT ,0, λT ,1, . . . , λT ,n are the barycentric coordinate functions with respect
to T . Each function λT ,i ∈ P1(T ) is determined by the equations λT ,i (x j ) = δi, j ,
0 ≤ i, j ≤ n, being δ.,. the Kronecker’s symbol. All together, the functions λT ,i form
a basis of P1(T ), are non-negative on T , and sum to 1 identically on T .

To make for the higher order r ≥ 1, we introduce the Bernstein basis of the space
Pr (T ): it consists of all monomials of degree r in the variables λT ,i . We have

Pr (T ) = span{λα
T : α ∈ I(n + 1, r)}, λα

T := λ
α0
T ,0λ

α1
T ,1 . . . λ

αn
T ,n .

Whenever a fixed simplex T is understood, wemay simplify the notation by writing

λi ≡ λT ,i , λα ≡ λα
T .

2.3 Polynomial differential forms

We denote by Λk(T ) the space of differential k-forms over T with smooth bounded
coefficients. For k = 0, the set Λ0(T ) = C∞(T ) is the space of smooth functions
over T with uniformly bounded derivatives of all orders. Furthermore, Λk(T ) �= {0}
for 0 ≤ k ≤ n. We recall the exterior product ω ∧ η ∈ Λk+l(T ) for ω ∈ Λk(T ) and
η ∈ Λl(T ). Let d : Λk(T ) → Λk+1(T ) denote the exterior derivative operator.

We write dλ0, dλ1, . . . , dλn ∈ Λ1(T ) for the exterior derivatives of the barycentric
coordinate functions. Clearly,

dλ0 + dλ1 + · · · + dλn = 0,

on T since
∑n

i=0 λi = 1. If σ ∈ Σ( j : l,m : n), we set dλσ := dλσ( j) ∧ · · · ∧ dλσ(l)

the volume (l − j + 1)-form.
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For k > 0, any element ω of Λk(T ) can be written as

ω =
∑

σ∈Σ(0:k−1,1:n)

aσdλσ ,

where aσ ∈ C∞(T ). Taking aσ ∈ Pr (T ), we obtain the spacePrΛ
k(T ) of polynomial

differential k-forms of polynomial degree at most r . Moreover, PrΛ
0(T ) coincides

with Pr (T ).
For k > 0,

P0Λ
k(T ) = span{dλσ : σ ∈ Σ(0 : k − 1, 1 : n)}.

Example 3 For n = 3, one has

P0Λ
1(T ) = span{dλ1, dλ2, dλ3},

P0Λ
2(T ) = span{dλ1 ∧ dλ2, dλ1 ∧ dλ3, dλ2 ∧ dλ3},

P0Λ
3(T ) = span{dλ1 ∧ dλ2 ∧ dλ3},

respectively. ��
Furthermore, if 0 < k < n, we can write

PrΛ
k(T ) = span{λαdλσ : σ ∈ Σ(0 : k − 1, 1 : n) and α ∈ I(n + 1, r)}.

The set

BPrΛ
k(T ) := {λα dλσ : σ ∈ Σ(0 : k − 1, 1 : n) and α ∈ I(n + 1, r)} (3)

is a basis of PrΛ
k(T ).

For k = 0,
BPrΛ

0(T ) := {λα : α ∈ I(n + 1, r)}
is a basis of PrΛ

0(T ) while for k = n,

BPrΛ
n(T ) := {λαdλ1 ∧ · · · ∧ dλn : α ∈ I(n + 1, r)}

is a basis of PrΛ
n(T ).

A particular set of polynomial differential k-forms of polynomial degree 1 are the
Whitney’s differential forms. They are associated with the k-simplices f of T . If
k = n, then f = T , and the Whitney’s differential form wT is the volume form of
polynomial degree 0.

Definition 1 Let k ≥ 0 and f ∈ Δk(T ). TheWhitney’s differential formw f associated
with the subsimplex f is defined, recursively in k, as follows:

123

86 Page 6 of 34



Weights for moments’ geometrical...

– If k = 0, then f is a vertex of T , namely, f = [xi ] for i = 0, . . . , n, and
w f = w[xi ] = λi ;

– If k > 0, then f = fσ for a σ ∈ Σ(0 : k, 0 : n) and

w fσ =
k∑

i=0

(−1)iλσ(i)dw fσ \[xσ(i)],

being fσ \ [xσ(i)] ∈ Δk−1(T ) the oriented (k − 1)-face of T with the vertices of
fσ except xσ(i).

We canwrite fσ \[xσ(i)] = [xσ(0), . . . , x̂σ(i), . . . , xσ(k)], where thewide-hat means
that the underlying term is omitted from the list.

For each σ ∈ Σ(0 : k, 0 : n), it holds that

dw fσ = (k + 1)! dλσ = (k + 1)! dλσ(0) ∧ · · · ∧ dλσ(k).

Then,

w fσ =
k∑

i=0

(−1)iλσ(i)dw fσ \[xσ(i)] = k!
k∑

i=0

(−1)iλσ(i) dλσ(0) ∧ · · · ∧ d̂λσ(i) ∧ · · · ∧ dλσ(k).

Example 4 The Whitney’s 1-form associated with the edge e = [xσ(0), xσ(1)] is

we = λσ(0)dλσ(1) − λσ(1)dλσ(0).

The Whitney’s 2-form associated with the face f = [xσ(0), xσ(1), xσ(2)] reads

w f = 2(λσ(0)dλσ(1) ∧ dλσ(2) − λσ(1)dλσ(0) ∧ dλσ(2) + λσ(2)dλσ(0) ∧ dλσ(1)).

In R
3, the Whitney’s 3-form associated with T = [xσ(0), xσ(1), xσ(2), xσ(3)] is

wT = 6 dλσ(1) ∧ dλσ(2) ∧ dλσ(3),

where we have used the fact that λ0 + λ1 + λ2 + λ3 = 1. ��
In finite element exterior calculus, the space of Whitney’s differential k-forms on

T is denoted by
P−
1 Λk(T ) := span{w f : f ∈ Δk(T )}.

Since there is a one-to-one correspondence between Δk(T ) and Σ(0 : k, 0 : n),
we can also write

P−
1 Λk(T ) := span{w fσ : σ ∈ Σ(0 : k, 0 : n)}.

Definition 2 Whitney’s differential k-forms of polynomial degree r + 1 are the ele-
ments of the space

P−
r+1Λ

k(T ) := span{λαw fσ : σ ∈ Σ(0 : k, 0 : n) and α ∈ I(n + 1, r)}.
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For k > 0, the space P−
r+1Λ

k(T ) � Pr+1Λ
k(T ).

For k = 0,

P−
r+1Λ

0(T ) = span{λαλi : i ∈ {0, . . . , n} and α ∈ I(n + 1, r)}

= span{λα̃ : α̃ ∈ I(n + 1, r + 1)} = Pr+1Λ
0(T ).

For k = n,

P−
r+1Λ

n(T ) = span{λαdλ1 ∧ · · · ∧ dλn : α ∈ I(n + 1, r)} = PrΛ
n(T ).

Remark 1 It is worth noting that, in the n-simplex T with vertices x0, x1, . . . , xn , the
elements belonging to the set

{λαw fσ : σ ∈ Σ(0 : k, 0 : n), α ∈ I(n + 1, r)}

are not linearly independent. As an example, for n = 2, if k = 1, and r = 1, it can be
verified that

λ0w[x1,x2] − λ1w[x0,x2] + λ2w[x0,x1] = 0. (4)

Given σ ∈ Σ(0 : k, 0 : n), we set

Iσ (n + 1, r) := {α ∈ I(n + 1, r) : αi = 0 ∀ i < σ(0)}.

When k = 0, then fσ is a vertex of T , namely, fσ = [x j ] being σ(0) = j . In
this case, to be clearer, we will sometimes use the notation I[x j ](n + 1, r) instead of
Iσ (n + 1, r).

A basis of P−
r+1Λ

k(T ) is

BP−
r+1Λ

k(T ) = {λαw fσ : σ ∈ Σ(0 : k, 0 : n) and α ∈ Iσ (n + 1, r)}
(see, e.g., [16]). For n = 2, k = 1, and r = 1, the 8 elements of BP−

2 Λ1(T ), with
T = [x0, x1, x2], are

λi w[x0,x1] = λi ( λ0dλ1 − λ1dλ0 ), i = 0, 1, 2,
λi w[x0,x2] = λi ( λ0dλ2 − λ2dλ0 ), i = 0, 1, 2,
λi w[x1,x2] = λi ( λ1dλ2 − λ2dλ1 ), i = 1, 2 .

The conditionα ∈ Iσ (3, 1)preventsλ0w[x1,x2] in (4) frombeing in the setBP−
2 Λ1(T ).

3 Weights andmoments

3.1 Small simplices and weights

The concepts of small simplices and weights for polynomial differential forms in
P−
r+1Λ

k(T ) were born in [21, 22], for any order k and any polynomial degree r ≥
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0, to solve the difficulty raised in [7]: “The main problem with such forms is the
interpretation of DoFs” in geometrical terms. We recall these concepts here below
with a notation adapted to the isomorphism we want to state between these new DoFs,
the weights, and the classical ones, moments, introduced in [5, 19].

In the n-simplex T with vertices x0, x1, . . . , xn , the principal lattice of order r + 1
(r ≥ 0) is the set of points defined by their barycentric coordinates with respect to the
vertices of T as follows:

Lr+1(T ) :=
{

x ∈ T : λi (x) ∈
{

0,
1

r + 1
, . . . ,

r

r + 1
, 1

}

for each i ∈ {0, . . . , n}
}

.

To each multi-index α ∈ I(n + 1, r), we associate an affine function, τα : T −→ T ,
such that λi (τα(x)) = λi (x)+αi

r+1 . If fσ is a face of T , then

τα( fσ ) := {τα(x) : x ∈ fσ }.

Definition 3 The small k-simplexes of order r in T are the elements of the set

Skr (T ) := {τα( fσ ) : fσ ∈ Δk(T ) and α ∈ I(n + 1, r)}
= {τα( fσ ) : σ ∈ Σ(0 : k, 0 : n) and α ∈ I(n + 1, r)}.

For k > 0, they are 1/(r + 1)-homothetic to k-faces of T , with vertices in Lr+1(T ).
For k = 0, we have S0r (T ) = Lr+1(T ).

Example 5 For k = 0, let us set n = 2 and r = 1. If α = (1, 0, 0), we have that

τα(x0) = (1 , 0 , 0), τα(x1) =
(
1

2
,
1

2
, 0

)

, τα(x2) =
(
1

2
, 0 ,

1

2

)

,

whereas for α = (0, 1, 0), we obtain

τα(x0) =
(
1

2
,
1

2
, 0

)

, τα(x1) = (0 , 1 , 0), τα(x2) =
(

0 ,
1

2
,
1

2

)

that are points all in L2(T ). ��
We recall that there is a one-to-one correspondence between the elements ofΔk(T )

and Σ(0 : k, 0 : n). Moreover, for k > 0, there is a one-to-one correspondence
between the elements of Skr (T ) and the couples (σ,α) with σ ∈ Σ(0 : k, 0 : n) and
α ∈ I(n + 1, r). In fact, if α, α′ ∈ I(n + 1, r) and α �= α′, then τα(T ) ∩ τα′(T )

is either empty or an element of S0r (T ). For k = 0, there is not such a one-to-one
correspondence. The points of the principal lattice of T that are not the vertices of T
have more than one representation as small node (see Fig. 2 and Example 6).

Example 6 Let us suppose n = 2 and r = 3. The point with barycentric coordinates
( 14 ,

1
4 ,

2
4 ) in T , has different representations, as small node. Indeed, by referring to
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Fig. 2 Points of the principal
lattice for P−

4 Λ0(T ), where T
is a 2-simplex. The node with
barycentric coordinates
( 14 , 1

4 , 2
4 ) in T is shared by the

three gray small triangles

Fig. 2, this point can be τα( fσ ) with

α = (1, 0, 2), fσ = x1, in the top-left gray small triangle,
α = (0, 1, 2), fσ = x0, in the top-right gray small triangle,

α = (1, 1, 1), fσ = x2, in the bottom-center gray small triangle,

respectively. ��
The weight of ω ∈ Λk(T ) on a k-simplex s contained in T is denoted by

∫
s ω. If

k = 0, for ω ∈ C∞(T ) and s ∈ T , we have
∫
s ω = ω(s).

In particular, we are interested in the following set of weights.

Definition 4 Let ω ∈ Λk(T ), σ ∈ Σ(0 : k, 0 : n) and α ∈ I(n + 1, r).

Wσ,α(ω) :=
∫

τα( fσ )

ω. (5)

The weights of Definition 4 are determinant in P−
r+1Λ

k(T ), namely, if ω ∈
P−
r+1Λ

k(T ) and
∫
s ω = 0 for all s ∈ Skr (T ), then ω = 0 (see [11] for a proof).

However, for 0 < k < n, the cardinality of the set of weights {Wσ,α(ω) : σ ∈ Σ(0 :
k, 0 : n), α ∈ I(n + 1, r)} is greater than the dimension of P−

r+1Λ
k(T ). Hence, in

the sequel, we often consider the following set of weights:

Wk := {Wσ,α(ω) : σ ∈ Σ(0 : k, 0 : n), α ∈ Iσ (n + 1, r)}. (6)

It is worth noting thatWk is determinant (see [1]) and its cardinality coincides with
the dimension of P−

r+1Λ
k(T ).

Remark 2 Only the second one of the three representations in Example 6 verifies the
condition α ∈ Iσ (n+1, r) required to support a weight of the set defined in (6). In the
first representation σ(0) = 1, hence Iσ (3, 3) is the set of multi-indices α ∈ I(3, 3)
with α0 = 0 and α = (1, 0, 2) /∈ Iσ (3, 3). In the second representation σ(0) = 0,
hence Iσ (3, 3) = I(3, 3) and α = (0, 1, 2) ∈ I(3, 3). In the third representation
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σ(0) = 2, hence Iσ (3, 3) is the set of multi-indices α ∈ I(3, 3) with α0 = α1 = 0,
and α = (1, 1, 1) /∈ Iσ (3, 3).

3.2 Moments associated with a particular basis of polynomial differential forms

Let ω be a smooth differential k-form defined on T ⊂ R
n . For each d-face fζ of T ,

with ζ ∈ Σ(0 : d, 0 : n) and k ≤ d ≤ n, the moments of ω in fζ of degree r − (d−k)
are

Mζ,η(ω) :=
∫

fζ
Tr fζ ω ∧ η, ∀ η ∈ Pr−(d−k)Λ

d−k( fζ ) , (7)

where Tr fζ is the trace operator on fζ .
It is well known that these moments are determinant in P−

r+1Λ
k(T ). Taking η in a

basis of each spacePr−(d−k)Λ
d−k( fζ ), one obtains a determinant set of moments with

cardinality equal to the dimension of P−
r+1Λ

k(T ) (see [5] and [11], for two different
proofs).

The goal of the present work is to point out an isomorphism between moments
and weights which, in a sense specified in the next sections, is consistent with the
exterior derivative operator. To do that, we will consider a particular basis of the space
Pr−(d−k)Λ

d−k( fζ ) in (7).

– If d = k, we adopt the Bernstein’s basis of the space Pr ( fζ ), namely

BPrΛ
0( fζ ) = {λβ

fζ
: β ∈ I(d + 1, r)},

where λ
β
fζ

= λ
β0
fζ ,0 . . . λ

βd
fζ ,d = λ

β0
T ,ζ(0) . . . λ

βd
T ,ζ(d).

– If d > k, we rely on the basis indicated in (3), namely,

BPr−(d−k)Λ
d−k( fζ ) = {λβ

fζ
(dλ fζ )ρ : ρ ∈ Σ(0 : d − (k + 1), 1 : d),

β ∈ I(d + 1, r − (d − k))}.
Here

(dλ fζ )ρ = dλ fζ ,ρ(0) ∧ · · · ∧ dλ fζ ,ρ(d−(k+1))

= dλT ,ζ(ρ(0)) ∧ · · · ∧ dλT ,ζ(ρ(d−(k+1))).

Example 7 For k = 1,

– If fζ = [x0, x2, x3] ∈ Δ2(T ), then d = 2, d − k = 1, and

BPr−1Λ
1( fζ ) = {λβ

fζ
dλ2 : β ∈ I(3, r − 1)} ∪ {λβ

fζ
dλ3 : β ∈ I(3, r − 1)};

– If fζ = [x0, x1, x2, x3] ∈ Δ3(T ) (for n = 3, it means fζ = T ), then d − k = 2
and

BPr−2Λ
2( fζ ) = {λβ

fζ
dλ1 ∧ dλ2 : β ∈ I(4, r − 2)}

∪{λβ
fζ
dλ1 ∧ dλ3 : β ∈ I(4, r − 2)} ∪ {λβ

fζ
dλ2 ∧ dλ3 : β ∈ I(4, r − 2)},
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respectively. ��
With these choices of basis, we obtain the following moments for ω ∈ Λk(T ):

for each ζ ∈ Σ(0 : k, 0 : n), and β ∈ I(k + 1, r)

Mζ,∅,β(ω) :=
∫

fζ
Tr fζ ω ∧ λ

β
fζ

; (8)

for each d > k, ζ ∈ Σ(0 : d, 0 : n), ρ ∈ Σ(0 : d − (k + 1), 1 : d) and β ∈
I(d + 1, r − (d − k))

Mζ,ρ,β(ω) :=
∫

fζ
Tr fζ ω ∧ λ

β
fζ

(dλ fζ )ρ . (9)

Weuse the notation “ρ = ∅”when d = k sinceΣ(0 : d−(k+1), 1 : d) has not been
defined for d = k. We thus have the following set of moments for ω ∈ P−

r+1Λ
k(T ):

Mk := {Mζ,ρ,β(ω) : ζ ∈ Σ(0 : d, 0 : n), ρ ∈ Σ(0 : d − (k + 1), 1 : d),

and β ∈ I(d + 1, r − (d − k)) with k ≤ d ≤ n}.
(10)

Remark 3 If ω ∈ Λ0(T ),

– when d = k = 0, then ζ ∈ Σ(0 : 0, 0 : n) and β ∈ I(1, r), so fζ = [xζ(0)] and
β = (r) (the “multi-index” β has only one component that takes the value r ).
We have

Mζ,∅,β(ω) = (λrζ(0)ω)(xζ(0)) = ω(xζ(0))=: M̂ζ,β(ω)

– when d > 0, then ζ ∈ Σ(0 : d, 0 : n), ρ ∈ Σ(0 : d − 1, 1 : d) and β ∈
I(d + 1, r − d). It is worth noting that Σ(0 : d − 1, 1 : d) has a unique element
and (dλ fζ )ρ = dλζ(1) ∧ · · · ∧ dλζ(d), namely

Mζ,ρ,β(ω) =
∫

fζ
Tr fζ ω ∧ λ

β
fζ

(dλζ(1) ∧ · · · ∧ dλζ(d))=: M̂ζ,β(ω).

This means that inΛ0(T )moments depend on two parameters, ζ ∈ Σ(0 : d, 0 : n)

and β ∈ I(d+1, r −d). Hence, inΛ0(T ) to denote the moments, we will often prefer
the notation M̂ζ,β with ζ ∈ Σ(0 : d, 0 : n), β ∈ I(d + 1, r − d), and d ∈ {0, . . . , n}.

4 Isomorphism

We establish an isomorphism, one for each value of k ∈ {0, . . . , n}, between the set
of moments Mk defined in (10) and the set of weights Wkdefined in (6).

We distinguish two cases, when the support fζ of the moment has dimension d
either equal to the order k of the differential form or higher.
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The moment Mζ,∅,β(ω), with ζ ∈ Σ(0 : k, 0 : n) and β ∈ I(k + 1, r) is linked to
the weightWσ,α(ω), with σ = ζ and α = β Eζ , the extension of β to a multi-index in
I(n+1, r) by the matrix Eζ defined in (1). In this case, the small simplex s = τα( fσ )

is not only parallel to fσ = fζ , but it is in fact contained in fζ .
In order to associate a weight with the moment Mζ,ρ,β(ω) when d > k, we first

prove the following lemma.

Lemma 1 If ζ ∈ Σ(0 : d, 0 : n) and ρ ∈ Σ(0 : d − (k + 1), 1 : d) for some d with
k < d ≤ n, then ζ ◦ ρ ∈ Σ(0 : d − (k + 1), 1 : n) and the face of T = [x0, . . . , xn]
with vertices {x j : j ∈ [[ζ ]] \ [[ζ ◦ ρ]]} is a k-face of fζ that contains xζ(0), the first
vertex of fζ .

Proof If ζ ∈ Σ(0 : d, 0 : n) and ρ ∈ Σ(0 : d − (k + 1), 1 : d), then ρ(0) > 0 and
ζ(ρ(0)) > ζ(0) ≥ 0, hence ζ ◦ ρ ∈ Σ(0 : d − (k + 1), 1 : n).

We notice that #[[ζ ]] = d + 1, #[[ζ ◦ ρ]] = d − k, and [[ζ ◦ ρ]] ⊂ [[ζ ]], hence
#([[ζ ]] \ [[ζ ◦ ρ]]) = k + 1 and the face of T = [x0, . . . , xn] with vertices {x j : j ∈
[[ζ ]] \ [[ζ ◦ ρ]]} is a k-face of fζ = [xζ(0), . . . , xζ(d)].

Using again that ρ ∈ Σ(0 : d − (k + 1), 1 : d) one has ζ(0) < ζ(1) ≤ ζ(ρ( j)) for
all j ∈ {0, . . . , d − (k + 1)}. Hence, ζ(0) /∈ [[ζ ◦ ρ]] and the vertex xζ(0) belongs to
the set {x j : j ∈ [[ζ ]] \ [[ζ ◦ ρ]]}. ��

We identify moments Mζ,ρ,β(ω) with weights Wσ,α(ω) in small simplices that are
parallel to the k-face of fζ with vertices {x j : j ∈ [[ζ ]] \ [[ζ ◦ ρ]]} and that are not
completely contained in the boundary of fζ .

The map σ ∈ Σ(0 : k, 0 : n) is such that fσ is the element of Δk(T ) with vertices
[[ζ ]] \ [[ζ ◦ ρ]].1

The multi-index α is constructed in the following way. Since [[ρ]] is a subset of
{0, . . . , d} with d − k elements and β ∈ I(d + 1, r − (d − k)), the multi-index
β̃ = β + e[[ρ]] belongs to I(d + 1, r). We set α = β̃ Eζ , the extension of β̃ to a
multi-index in I(n + 1, r) by the matrix Eζ .

Example 8 For n = 3 and k = 1, we explain which weights are associated with some
selected elements of the set of moments unisolvent in P−

5 Λ1(T ) (r = 4).

– Let us consider the moment
∫
[x2,x3] ω λ2λ

3
3 , thus d = 1 = k and ρ = ∅.

Here, we have σ = ζ , and the multi-index α is the extension of β (in this case,

β̃ = β). More precisely, α = (1, 3)

[
0 0 1 0
0 0 0 1

]

= (0, 0, 1, 3).

The associated weight is
∫
s ω with s = τ(0,0,1,3)([x2, x3])= τα( fσ ).

– Let us consider the moment
∫
[x0,x2,x3] ω ∧ λ20λ3(dλ2) , thus d = 2 > 1 = k.

Here, we have [[ζ ]] = {0, 2, 3}, [[ρ]] = {1}, and [[ζ ◦ ρ]] = {2}.
Then σ ∈ Σ(0 : 1, 0 : 3)with [[σ ]] = {0, 2, 3}\{2} = {0, 3} so σ(0) = 0, σ (1) =
3.

1 If ρ∗ ∈ Σ(0 : k, 0 : d) is the complementary map of ρ, namely, [[ρ]] ∪ [[ρ∗]] = {0, 1, . . . , d}, then
σ = ζ ◦ ρ∗.
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Concerning themulti-index, first, we compute β̃ = (2, 0, 1)+(0, 1, 0) = (2, 1, 1).

Then, we extend it as α = (2, 1, 1)

⎡

⎣
1 0 0 0
0 0 1 0
0 0 0 1

⎤

⎦ = (2, 0, 1, 1).

The associated weight is
∫
s ω with s = τ(2,0,1,1)([x0, x3])= τα( fσ ).

– Let us consider the moment
∫
[x0,x1,x2,x3] ω ∧ λ0λ2 (dλ1 ∧ dλ2) ,

thus d = 3 > 1 = k.

Here, we have [[ζ ]] = {0, 1, 2, 3}, [[ρ]] = {1, 2} = [[ζ ◦ ρ]].
Then, σ ∈ Σ(0 : 1, 0 : 3) with [[σ ]] = {0, 1, 2, 3} \ {1, 2} = {0, 3}, so σ(0) =
0, σ (1) = 3.
Concerning the multi-index β = (1, 0, 1, 0) ∈ I(4, 4 − (3 − 1)) = I(4, 2).
Finally, α = β̃ = β + e{1,2} = (1, 0, 1, 0) + (0, 1, 1, 0) = (1, 1, 2, 0). Note that,
in this case, it is not necessary to extend β̃.
The associated weight is

∫
s ω with s = τ(1,1,2,0)([x0, x3])= τα( fσ ). ��

Example 9 We consider the three types of moments for P−
3 Λ1(T ) indicated by differ-

ent symbols in Fig. 1, center. They can be geometrically localized in T by resorting
to the small edges s (shown in Fig. 1, right and left) supporting the corresponding
weights. Indeed, we have as follows:

∫
[1,2] ω λ22 (⇐⇒ ∫

s ω with s = τ(0,0,2,0)([1, 2]) ) ⇐⇒ s = ©
∫
[0,1,2] ω ∧ λ1(dλ1) (⇐⇒ ∫

s ω with s = τ(0,2,0,0)([0, 2]) ) ⇐⇒ s = �1
∫
[0,1,2] ω ∧ λ1(dλ2) (⇐⇒ ∫

s ω with s = τ(0,1,1,0)([0, 1]) ) ⇐⇒ s = �2

∫
[0,1,2,3] ω ∧ (dλ1 ∧ dλ2) (⇐⇒ ∫

s ω with s = τ(0,1,1,0)([0, 3]) ) ⇐⇒ s = ♦1
∫
[0,1,2,3] ω ∧ (dλ1 ∧ dλ3) (⇐⇒ ∫

s ω with s = τ(0,1,0,1)([0, 2]) ) ⇐⇒ s = ♦2
∫
[0,1,2,3] ω ∧ (dλ2 ∧ dλ3) (⇐⇒ ∫

s ω with s = τ(0,0,1,1)([0, 1]) ) ⇐⇒ s = ♦3.

Themoments (on the left) are in correspondence (⇐⇒) with theweights (in the center)
as it is established by the isomorphism described in the present section. Weights have
a precise geometrical localization in T , namely, they are supported on precise small
edges s (indicated in the center). As a result, moments can be geometrically localized
in T by associating with each of them the small simplex s (on the right) supporting
the weight they correspond with. �

The set of moments defined in (10) and the set of weights defined in (6) are subsets
of (P−

r+1Λ
k(T ))∗, the dual space of P−

r+1Λ
k(T ). We are interested in the maps Wk

defined from this set of moments to the set of weights in the following way:

Definition 5 For each k, d, n ∈ N, 0 ≤ k ≤ d ≤ n, ζ ∈ Σ(0 : d, 0 : n), ρ ∈ Σ(0 :
d − (k + 1), 1 : d) (ρ = ∅ if d = k) and β ∈ I(d + 1, r − (d − k)), we set

– If d = k
Wk(Mζ,∅,β) = Wζ,β Eζ

;
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– If d > k
Wk(Mζ,ρ,β) = Wζ◦ρ∗,(β+e[[ρ]])Eζ

,

where ζ ◦ ρ∗ ∈ Σ(0 : k, 0 : n) is such that [[ζ ◦ ρ∗]] = [[ζ ]] \ [[ζ ◦ ρ]].

The following proposition shows that the image of this map is, in fact, the set of
weights considered in (6).

Proposition 1 If Wσ,α = Wk(Mζ,∅,β), with ζ ∈ Σ(0 : d, 0 : n) and β ∈ I(d + 1, r),
or Wσ,α = Wk(Mζ,ρ,β) for a triplet

(ζ, ρ,β) ∈ Σ(0 : d, 0 : n) × Σ(0 : d − (k + 1), 1 : d) × I(d + 1, r − (d − k))

with k < d ≤ n, then (σ,α) ∈ Σ(0 : k, 0 : n) × Iσ (n + 1, r).

Proof Note that (σ,α) ∈ Σ(0 : k, 0 : n) × I(n + 1, r) by construction. We have thus
to prove that α ∈ Iσ (n + 1, r), namely, that αi = 0 for all i < σ(0).

We recall that if ζ ∈ Σ(0 : d, 0 : n) and β̃ ∈ I(d + 1, r̃), then (β̃ Eζ )i = 0 if
0 ≤ i < ζ(0), hence β̃ Eζ ∈ Iζ (n + 1, r̃).

If Wσ,α = Wk(Mζ,∅,β), then σ = ζ and α = β Eζ ∈ Iζ (n + 1, r) = Iσ (n + 1, r).
If d > k and Wσ,α = Wk(Mζ,ρ,β), then α = (β + e[[ρ]])Eζ ∈ Iζ (n + 1, r). We

notice that σ(0) = ζ(0) because [[σ ]] = [[ζ ]]\[[ζ ◦ρ]] and ζ(0) /∈ [[ζ ◦ρ]] ⊂ {1, . . . , n}.
Hence, Iζ (n + 1, r) = Iσ (n + 1, r). ��

Similarly, we can define a map Mk from the set of weights in (6) to the set of
moments in (10).

Definition 6 Given a couple (σ,α) ∈ Σ(0 : k, 0 : n) × Iσ (n + 1, r), we denote

d = #([[α]] ∪ [[σ ]]) − 1.

– If [[α]] ⊂ [[σ ]], then [[α]] ∪ [[σ ]] = [[σ ]] and d = k. We set ζ = σ , ρ = ∅ and
β = αE

ζ (= αE
σ ).

– If [[α]] �⊂ [[σ ]], then [[α]]∪ [[σ ]] � [[σ ]] and d > k. We set ζ ∈ Σ(0 : d, 0 : n) such
that [[ζ ]] = [[α]]∪[[σ ]], ρ ∈ Σ(0 : d−(k+1), 1 : d) such that [[ζ ◦ρ]] = [[α]]\[[σ ]],
and β = αE

ζ − e[[ρ]].

Then, we setMk(Wσ,α) := Mζ,ρ,β .

Proposition 2 For each (σ,α) ∈ Σ(0 : k, 0 : n)×Iσ (n+1, r), the elementMk(Wσ,α)

belongs to the set of moments defined in (10).

Proof In fact, k ≤ d ≤ n, ζ ∈ Σ(0 : d, 0 : n) and ρ = ∅ if d = k or ρ ∈ Σ(0 :
d−(k+1), 1 : d), if d > k by construction. Furthermore, β is a multi-index with d+1
components. Since [[α]] ⊂ [[ζ ]], then |αE

ζ | = |α| and |β| = |α|−(d−k) = r−(d−k).
Hence, β ∈ I(d + 1, r − (d − k)). ��
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Remark 4 From a geometric point of view, we associate with the multi-index α ∈
Iσ (n+1, r) a subsimplex fa(α) of T with vertices those in [[α]], namely, xi is a vertex
of fa(α) if and only if αi �= 0. Given fσ and fσ̃ two subsimplices of T , we denote by
fσ ∨ fσ̃ the subsimplex of T with vertices those of fσ and fσ̃ . The moment associated
with the weight Wσ,α is an integral on the face fζ = fσ ∨ fa(α).

– If [[α]] ⊂ [[σ ]], then fσ ∨ fa(α) = fσ and ρ = ∅.
– If [[α]] �⊂ [[σ ]], then fσ ∨ fa(α) �= fσ and ρ involves all the vertices of fσ ∨ fa(α)

that are not in fσ .

Example 10 Let us consider T ⊂ R
3,ω ∈ P−

4 Λ1(T ) (r = 3, k = 1) and fσ = [x1, x3]
(namely, σ ∈ Σ(0 : 1, 0 : 3), σ(0) = 1 and σ(1) = 3), we have

M1Wσ,(0,3,0,0)(ω) = ∫
[x1,x3] ω λ31 ( fa(α) = [x1])

M1Wσ,(0,2,0,1)(ω) = ∫
[x1,x3] ω λ21λ3 ( fa(α) = [x1, x3])

M1Wσ,(0,2,1,0)(ω) = ∫
[x1,x2,x3] ω ∧ λ21(dλ2) ( fa(α) = [x1, x2]).

For fσ = [x0, x3] (namely, σ ∈ Σ(0 : 1, 0 : 3), σ(0) = 0 and σ(1) = 3), we have

M1Wσ,(0,2,1,0)(ω) = ∫
[x0,x1,x2,x3] ω ∧ λ1(dλ1 ∧ dλ2) ( fa(α) = [x1, x2]).

For ω ∈ P−
4 Λ2(T ) (r = 3, k = 2) and fσ = [x0, x1, x3] (namely, σ ∈ Σ(0 : 2, 0 :

3), σ(0) = 0, σ(1) = 1, σ(2) = 3), we have

M2Wσ,(0,3,0,0)(ω) = ∫
[x0,x1,x3] ω λ31 ( fa(α) = [x1])

M2Wσ,(1,1,0,1)(ω) = ∫
[x0,x1,x3] ω λ0λ1λ3 ( fa(α) = [x0, x1, x3])

M2Wσ,(1,1,1,0)(ω) = ∫
[x0,x1,x2,x3] ω ∧ λ0λ1(dλ2) ( fa(α) = [x0, x1, x2])

M2Wσ,(0,0,3,0)(ω) = ∫
[x0,x1,x2,x3] ω ∧ λ22(dλ2) ( fa(α) = [x2]).

It is worth noting that, with this geometric rule, we associate to a couple (σ,α) ∈
Σ(0 : k, 0 : n) × I(n + 1, r), with α /∈ Iσ (n + 1, r), a weight that is not in (6) and a
moment that is not in (10). For instance, if fσ = [x1, x3] and α = (1, 1, 0, 1), we have
fa(α) = [x0, x1, x3] and then the moment

∫
[x0,x1,x3] ω∧λ1λ3(dλ0). If α = (1, 1, 1, 0),

then fa(α) = [x0, x1, x2] and the corresponding moment should be
∫
[x0,x1,x2,x3] ω ∧

λ1(dλ0 ∧ dλ2). ��
Proposition 3 For any (σ,α) ∈ Σ(0 : k, 0 : n) × Iσ (n + 1, r), it holds that

WkMk(Wσ,α) = Wσ,α.

Proof If [[α]] ⊂ [[σ ]], then d = k, and using (2), we have

WkMk(Wσ,α) = Wk(Mσ,∅,αE
σ
) = Wσ,αE

σ Eσ
= Wσ,α ,
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where the last equality holds because [[α]] ⊂ [[σ ]].
If [[α]] �⊂ [[σ ]], then d > k and

WkMk(Wσ,α) = Wk(Mζ,ρ,β) ,

with ζ ∈ Σ(0 : d, 0 : n) such that [[ζ ]] = [[α]] ∪ [[σ ]], ρ ∈ Σ(0 : d − (k + 1), 1 : d)

such that [[ζ ◦ ρ]] = [[α]] \ [[σ ]], and β = αE
ζ − e[[ρ]]. Then, Wk(Mζ,ρ,β) = Wσ̃ ,̃α ,

with

σ̃ ∈ Σ(0 : k, 0 : n) such that [[̃σ ]] = [[ζ ]]\[[ζ ◦ρ]] = ([[α]]∪[[σ ]])\([[α]]\[[σ ]]) = [[σ ]]

and, using again (2), we obtain

α̃ = (β + e[[ρ]])Eζ = αE
ζ Eζ = α.

Also, in this case, the last equality holds because [[α]] ⊂ [[ζ ]] = [[α]] ∪ [[σ ]]. ��

Remark 5 Since the cardinality of both sets Mk and Wk defined in (10) and (6),
respectively, is equal to the dimension of P−

r+1Λ
k(T ), from Proposition 3, it follows

that MkWk is also equal to the identity.

5 Thematrix of the gradient operator

Let us fix a set R0 of unisolvent degrees of freedom for P−
r+1Λ

0(T ) and a set R1

of unisolvent degrees of freedom for P−
r+1Λ

1(T ). We denote by r0(ϕ) the vector
collecting the degrees of freedom of the set R0 evaluated on the 0-form ϕ and by
r1(ω) the vector collecting the degrees of freedom of the set R1 evaluated on the
1-form ω. Then, there exists a unique matrix GR (that depends on the sets R0 and R1)
such that

r1(dϕ) = GR r0(ϕ), ∀ϕ ∈ P−
r+1Λ

0(T ) .

When the two sets, R0 and R1, of degrees of freedom contain the weights defined
in Definition 4 (namely when Rk = Wk , for k = 0, 1), the matrix GR , denoted by
GW , has a clear geometrical meaning. By Stokes’ theorem, GW is the transposed of
the all-nodes incidence matrix of the graphMG with nodes the points of the principal
lattice of T and arcs the oriented small edges corresponding to couples (σ,α) with
σ ∈ Σ(0 : 1, 0 : n) and α ∈ Iσ (n + 1, r). This geometrical characterization is at the
basis of the tree-cotree techniques used in electromagnetism that are well known in
the low order case r = 0 and that have been recently extended to the high order case
r > 0 using weights (see [25]; see also [15] for an analogous result in the framework
of the isogeometric analysis).

We claim that the isomorphism defined in the previous section preserves the matrix
GR . Thismeans that, ifmk is the vector (rk) collecting themoments inMk forϕ (k = 0)
and dϕ (k = 1), associated, through this isomorphism Mk , with wk , the vector (rk)
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collecting the weights in Wk for ϕ and dϕ, i.e.,

M0W 0
j : ϕ �−→ (M0W 0

j )(ϕ) = M0
j (ϕ) := (m0) j ∀ j = 1, ..., dimP−

r+1Λ
0(T ),

M1W 1
� : dϕ �−→ (M1W 1

� )(dϕ) = M1
� (dϕ) := (m1)� ∀ � = 1, ..., dimP−

r+1Λ
1(T ),

and
W 0

j : ϕ �−→ W 0
j (ϕ) := (w0) j ∀ j = 1, ..., dimP−

r+1Λ
0(T ),

W 1
� : dϕ �−→ W 1

� (dϕ) := (w1)� ∀ � = 1, ..., dimP−
r+1Λ

1(T ),

then we have

m1 = GMm0, w1 = GWw0, with GM = GW .

The matrix GR does not change, namely GM = GW (see Fig. 3 for a visualization
of this property); this means that the matrix (GR = GM ) which represents the gradient
operator for moments is the same as the one (GR = GW ) which represents the same
operator for weights. This gives a geometrical meaning to the set of moments Mk , at
least for k = 0, 1, and allows to extend in a very natural way the tree-cotree techniques
to the high order case when the two sets of degrees of freedom are the moments in Mk .
To illustrate this fact, we complete the analysis previously done in [2], by involving
the isomorphism, and other results that we recall here below.

– The integration by parts (IBP) formula (see, e.g., [5]) reads

∫

f
Tr f du ∧ η =

∫

∂ f
Tr∂ f (Tr f u ∧ η) + (−1)k−1

∫

f
Tr f u ∧ dη , u ∈ Λk(T ).

Fig. 3 Schematic graph which gives an insight, for k = 0, 1, on the toolkit of mathematical concepts
sharpened by Alain Bossavit and that takes part in the foundation of computational methods in applied
mathematics. In the scheme, G is the gradient matrix of size Er+1 × Nr+1, with Er+1 = dimP−

r+1Λ
1(T )

and Nr+1 = dimP−
r+1Λ

0(T ), R
q is the set of arrays with q real components, w0 (resp. m0) is the array

of weights (resp. moments) for the 0-form ϕ, pk and p̃k are FE reconstruction operators, and the cycling
symbol stands for commutativity. If we adopt the isomorphism Mk linking weights to moments, then
GM = GW = G
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The boundary term results from the use of Stokes’ theorem, stating that
∫
C du =∫

∂C u , where u is a k-form and C a (k + 1)-chain. In [2] we explained, for any
k ∈ {0, . . . , n}, the information an IBP formula can provide. We have shown that
an IBP formula allows to identify the unknowns for fields in polynomial spaces.
Moreover, it gives theway to reconstruct differential operators and potentials, once
the unknowns (for fields and potentials) have been fixed. Hence, for k = 0, 1, the
IBP formula reconstructs the gradient operator.

– The affine function τα associated with each multi-index α, as described in Section
3.1, is indeed a chain map (see details in [8]), namely, it commutes with the
boundary operator, that is τα(∂ fσ ) = ∂(τα( fσ )), with fσ ∈ Δk(T ), for any
k > 0.

– The trace operator commutes with the exterior derivative operator (see an appli-
cation of this property in [5] to prove Lemma 4.24).

– Recalling that for each ζ ∈ Σ(0 : d, 0 : n) and β ∈ I(d + 1, s) we denote
λ

β
fζ

= ∏d
i=0 λ

βi
T ,ζ(i) ∈ Λ0(T ), one has

dλβ
fζ

=
d∑

j=0

β j

(
d∏

i=0

λ
βi−δi, j
T ,ζ(i)

)

dλ j =
d∑

j=0

β jλ
β−e j
fζ

dλ j ∈ Λ1(T ).

5.1 Weights: thematrix GW

If ϕ ∈ Λ0(T ), then dϕ ∈ Λ1(T ). Its weights in P−
r+1Λ

1(T ) are

Wσ,α(dϕ) = ∫
τα( fσ )

dϕ

= ∫
∂(τα( fσ ))

ϕ

= ∫
τα(∂ fσ )

ϕ

= ∫
τα(xσ(1))

ϕ − ∫
τα(xσ(0))

ϕ,

for all σ ∈ Σ(0 : 1, 0 : n) and α ∈ Iσ (n + 1, r). Note that the weights of a 0-form in
P−
r+1Λ

0(T ) are the values at the points of the principal lattice, so

Wσ,α(dϕ) = ϕ(τα(xσ(1))) − ϕ(τα(xσ(0))).

Let us denote σ1 ∈ Σ(0 : 0, 0 : n) such that σ1(0) = σ(1), and σ0 ∈ Σ(0 : 0, 0 : n)

such that σ0(0) = σ(0). We recall that 
α� denotes the minimal element of [[α]].
Since α ∈ Iσ (n + 1, r), then σ(0) ≤ 
α� and α ∈ Iσ0(n + 1, r). This means that

ϕ(τα(xσ(0))) = Wσ0,α(ϕ), being Wσ0,α an element of W 0.
On the other hand, if 
α� < σ(1), then α /∈ Iσ1(n + 1, r), hence Wσ1,α defined

as Wσ1,α(ϕ) = ϕ(τα(xσ(1))) is not an element of W 0. However, being τα(xσ(1)) a
point in the principal lattice of T of order r + 1, there exists a couple (σ∗,β) ∈
Σ(0 : 0, 0 : n) × Iσ∗(n + 1, r) such that τα(xσ(1)) = τβ(xσ∗(0)) (see Fig. 2). In fact,
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τα(xσ(1)) = τβ(x
α�) with β = α + eσ(1) − e
α� since

λi (τα(xσ(1))) = λi (xσ(1)) + αi

r + 1
=

{
1+αi
r+1 if i = σ(1)
αi
r+1 otherwise

and

λi (τβ(x
α�)) = λi (x
α�) + βi

r + 1
=

⎧
⎪⎨

⎪⎩

1+αi−1
r+1 if i = 
α�

αi+1
r+1 if i = σ(1)
αi
r+1 otherwise.

Moreover, if σ∗ ∈ Σ(0 : 0, 0 : n) is such that σ∗(0) = 
α�, then β ∈ Iσ∗(n + 1, r)
since 
β� ≥ 
α� if 
α� < σ(1). Hence, Wσ∗,β ∈ W 0 and we can write

Wσ,α(dϕ) = ϕ(τα+eσ(1)−e
α�(x
α�)) − ϕ(τα(xσ(0)))

= Wσ∗,β(ϕ) − Wσ0,α(ϕ).
(11)

Example 11 For the sake of simplicity, in the following, in order to refer to the weight
of a particular σ ∈ Σ(0 : k, 0 : n), we will write Wσ,α instead of W fσ ,α .

In P−
4 Λk(T ), we have

W[x0,x3],(0,2,1,0)(dϕ) = ϕ(τ(0,2,1,0)(x3)) − ϕ(τ(0,2,1,0)(x0)).

The multi-index (0, 2, 1, 0) does not belong to I[x3](4, 3). However,

τ(0,2,1,0)(x3) = τ(0,1,1,1)(x1),

and the multi-index (0, 1, 1, 1) belongs to I[x1](4, 3). So we have

W[x0,x3],(0,2,1,0)(dϕ) = ϕ(τ(0,1,1,1)(x1)) − ϕ(τ(0,2,1,0)(x0)),

respectively. ��
Let us consider the (oriented) graph MG with nodes the small vertices (namely,

the points of the principal lattice) and arcs the (oriented) small edges corresponding to
couples (σ,α)with σ ∈ Σ(0 : 1, 0 : n) and α ∈ Iσ (n+1, r). Relation (11) states that
the all-nodes incidence matrix of MG is G

W , with GW the matrix representing the
gradient operator at the discrete level using theweightsWk for k = 0, 1 (thus extending
to r > 0 the presentation done in [6], Chap.5, for r = 0). For the construction of a
global spanning tree of this graph for any r ≥ 0, see [25]. For the tree-cotree technique
intended as a way to impose uniqueness for a vector potential problem formulation,
see [23].

5.2 Moments: thematrix GM

We aim at associating an oriented graph, M̃G , with the gradient operator, when work-
ing with moments.
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We note that when ω ∈ Λ1(T ), the moments defined in (9), Mζ,ρ,β(ω), have
ρ ∈ Σ(0 : d − 2, 1 : d). So there exists a unique element of {1, . . . , d} that is not
in [[ρ]]. Let us set jρ := {1, . . . , d} \ [[ρ]]. Furthermore, if β ∈ I(d + 1, s), we set
β! := β0! · · · βd !. We use these notations in the following proposition:

Proposition 4 For k = 0, 1, let us consider the following moments for P−
r+1Λ

k(T ):

– For d = k

M̃ζ,∅,β(ω) := 1

β!Mζ,∅,β(ω)

for each ζ ∈ Σ(0 : d, 0 : n) and β ∈ I(d + 1, r);
– For d > k

M̃ζ,ρ,β(ω) :=
{

(−1) jρ−1

β! Mζ,ρ,β(ω) if k = 1
1
β!Mζ,ρ,β(ω) if k = 0

for each ζ ∈ Σ(0 : d, 0 : n), ρ ∈ Σ(0 : d − (k + 1), 1 : d), β ∈ I(d + 1, r −
(d − k)).

Then, if ϕ ∈ Λ0(T ), each moment of dϕ ∈ Λ1(T ) is the difference of two moments of
ϕ.

Proof Ifϕ ∈ Λ0(T ), then dϕ ∈ Λ1(T ) and itsmoments forP−
r+1Λ

1(T ) are as follows.
• Case d = k = 1. For each ζ ∈ Σ(0 : 1, 0 : n) and β ∈ I(2, r),

Mζ,∅,β(dϕ) = ∫
fζ
Tr fζ dϕ ∧ λ

β
fζ

= ∫
fζ
d(Tr fζ ϕ) ∧ λ

β
fζ

= − ∫
fζ
Tr fζ ϕ ∧ dλβ

fζ
+ ∫

∂ fζ
Tr∂ fζ ϕ ∧ Tr∂ fζ λ

β
fζ

.

Since fζ = [xζ(0), xζ(1)], then ∂ fζ = [xζ(1)] − [xζ(0)]

Mζ,∅,β(dϕ) = −
∫

fζ
Tr fζ ϕ ∧

(
β0λ

β−e0
fζ

dλζ(0) + β1λ
β−e1
fζ

dλζ(1)

)

+(ϕλ
β
fζ

)(xζ(1)) − (ϕλ
β
fζ

)(xζ(0)) .

In [xζ(0), xζ(1)], we have dλζ(0) = −dλζ(1), so

Mζ,∅,β(dϕ) =
∫

fζ
Tr fζ ϕ ∧ β0λ

β−e0
fζ

dλζ(1) −
∫

fζ
Tr fζ ϕ ∧ β1λ

β−e1
fζ

dλζ(1)

+(ϕλ
β
fζ

)(xζ(1)) − (ϕλ
β
fζ

)(xζ(0)).

Multiplying Mζ,∅,β(dϕ) by 1
β! , we obtain

1

β!
∫

fζ
Tr fζ dϕ ∧ λ

β
fζ

= β0

β!
∫

fζ
Tr fζ ϕ ∧ λ

β−e0
fζ

dλζ(1) − β1

β!
∫

fζ
Tr fζ ϕ ∧ λ

β−e1
fζ

dλζ(1)

+ 1

β! (ϕλ
β
fζ

)(xζ(1)) − 1

β! (ϕλ
β
fζ

)(xζ(0)).

(12)
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We notice that
β j

β! =
{

1
(β−e j )! if β j �= 0

0 if β j = 0 .

Moreover, only two of these four terms are different from zero because if β0 �= 0, then
(ϕλ

β
fζ

)(xζ(1)) = 0, whereas if β1 �= 0, then (ϕλ
β
fζ

)(xζ(0)) = 0.
In conclusion,

– If β0 �= 0 and β1 �= 0, then

M̃ζ,∅,β(dϕ) = 1

(β − e0)! M̂ζ,β−e0(ϕ) − 1

(β − e1)! M̂ζ,β−e1(ϕ);

– If β0 = 0, then β1 = r �= 0 and

M̃ζ,∅,β(dϕ) = − 1
(β−e1)! M̂ζ,β−e1(ϕ) + 1

β! M̂ζ1,β(ϕ)

= − 1
(β−e1)! M̂ζ,β−e1(ϕ) + 1

r !ϕ(xζ(1)),

being ζ1 ∈ Σ(0 : 0, 0 : n) such that ζ1(0) = ζ(1);
– If β1 = 0, then β0 = r �= 0 and

M̃ζ,∅,β(dϕ) = 1
(β−e0)! M̂ζ,β−e0(ϕ) − 1

β! M̂ζ0,β(ϕ)

= 1
(β−e0)! M̂ζ,β−e0(ϕ) − 1

r !ϕ(xζ(0))

being ζ0 ∈ Σ(0 : 0, 0 : n) such that ζ0(0) = ζ(0).

• Case d > k = 1. For each ζ ∈ Σ(0 : d, 0 : n), ρ ∈ Σ(0 : d − 2, 1 : d) and
β ∈ I(d + 1, r − (d − 1)),

Mζ,ρ,β(dϕ) =
∫

fζ
Tr fζ dϕ ∧ λ

β
fζ

(dλ fζ )ρ =
∫

fζ
d(Tr fζ ϕ) ∧ λ

β
fζ

(dλ fζ )ρ

= −
∫

fζ
Tr fζ ϕ ∧ d(λβ

fζ
(dλ fζ )ρ) +

∫

∂ fζ
Tr∂ fζ ϕ ∧ Tr∂ fζ (λ

β
fζ

(dλ fζ )ρ),

= −
d∑

i=0

βi

∫

fζ
Tr fζ ϕ ∧ (λ

β−ei
fζ

dλζ(i)) ∧ (dλ fζ )ρ

+
d∑

i=0

(−1)i
∫

[xζ(0),...,̂xζ(i),...,xζ(d)]
Tr∂ fζ ϕ ∧ Tr∂ fζ (λ

β
fζ

(dλ fζ )ρ) .

Taking into account the fact that if i ∈ [[ρ]], then Tr[xζ(0),...,̂xζ(i),...,xζ(d)](dλ fζ )ρ = 0
and dλζ(i) ∧ (dλ fζ )ρ = 0, both sums reduce to i ∈ {0, . . . , d} \ [[ρ]]. Recalling that
k = 1, ρ ∈ Σ(0 : d − 2, 1 : d) so both sums reduce, in fact, to two terms i = 0 and
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i = {1, . . . , d} \ [[ρ]] =: jρ . So we have

Mζ,ρ,β(dϕ) = −β0

∫

fζ
Tr fζ ϕ ∧ (λ

β−e0
fζ

dλζ(0)) ∧ (dλ fζ )ρ

−β jρ

∫

fζ
Tr fζ ϕ ∧ (λ

β−e jρ
fζ

dλζ( jρ)) ∧ (dλ fζ )ρ

+
∫

[xζ(1),...,xζ(d)]
Tr∂ fζ ϕ ∧ Tr∂ fζ (λ

β
fζ

(dλ fζ )ρ)

+(−1) jρ
∫

[xζ(0),...,x̂ζ( jρ ),...,xζ(d)]
Tr∂ fζ ϕ ∧ Tr∂ fζ (λ

β
fζ

(dλ fζ )ρ).

Taking into account that, in fζ , dλζ(0) = −∑d
i=1 dλζ(i) and by recalling that

(dλ fζ )ρ = dλζ(1) ∧ · · · ∧ d̂λζ( jρ) ∧ · · · ∧ dλζ(d)

it follows that dλζ(0) ∧ (dλ fζ )ρ = −dλζ( jρ) ∧ (dλ fζ )ρ , so

Mζ,ρ,β(dϕ) = +β0

∫

fζ
Tr fζ ϕ ∧ (λ

β−e0
fζ

dλζ( jρ)) ∧ (dλ fζ )ρ

−β jρ

∫

fζ
Tr fζ ϕ ∧ (λ

β−e jρ
fζ

dλζ( jρ)) ∧ (dλ fζ )ρ

+
∫

[xζ(1),...,xζ(d)]
Tr∂ fζ ϕ ∧ Tr∂ fζ (λ

β
fζ

(dλ fζ )ρ)

+(−1) jρ
∫

[xζ(0),...,x̂ζ( jρ ),...,xζ(d)]
Tr∂ fζ ϕ ∧ Tr∂ fζ (λ

β
fζ

(dλ fζ )ρ).

Moreover,

dλζ( jρ) ∧ (dλ fζ )ρ = dλζ( jρ) ∧ (dλζ(1) ∧ · · · ∧ d̂λζ( jρ) ∧ · · · ∧ dλζ(d))

= (−1) jρ−1dλζ(1) ∧ · · · ∧ dλζ(d).

Then,

Mζ,ρ,β(dϕ) = +(−1) jρ−1β0

∫

fζ
Tr fζ ϕ ∧ (λ

β−e0
fζ

dλζ(1) ∧ · · · ∧ dλζ(d))

+(−1) jρ β jρ

∫

fζ
Tr fζ ϕ ∧ (λ

β−e jρ
fζ

dλζ(1) ∧ · · · ∧ dλζ(d))

+
∫

[xζ(1),...,xζ(d)]
Tr∂ fζ ϕ ∧ Tr∂ fζ (λ

β
fζ

(dλ fζ )ρ)

+(−1) jρ
∫

[xζ(0),...,x̂ζ( jρ ),...,xζ(d)]
Tr∂ fζ ϕ ∧ Tr∂ fζ (λ

β
fζ

(dλ fζ )ρ) .
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If jρ = 1, then (dλ fζ )ρ = dλζ(2) ∧ · · · ∧ dλζ(d). If jρ > 1, we can use that in

[xζ(1), . . . , xζ(d)], it holds dλζ(1) = −∑d
j=2 dλζ( j) to write

(dλ fζ )ρ = dλζ(1) ∧ · · · ∧ d̂λζ( jρ) ∧ · · · ∧ dλζ(d)

= −dλζ( jρ) ∧ dλζ(2) ∧ · · · ∧ d̂λζ( jρ) ∧ · · · ∧ dλζ(d)

= −(−1) jρdλζ(2) ∧ · · · ∧ dλζ(d)

= (−1) jρ−1dλζ(2) ∧ · · · ∧ dλζ(d).

So we have

Mζ,ρ,β(dϕ) = (−1) jρ−1β0

∫

fζ
Tr fζ ϕ ∧ (λ

β−e0
fζ

dλζ(1) ∧ · · · ∧ dλζ(d))

+(−1) jρ β jρ

∫

fζ
Tr fζ ϕ ∧ (λ

β−e jρ
fζ

dλζ(1) ∧ · · · ∧ dλζ(d))

+(−1) jρ−1
∫

[xζ(1),...,xζ(d)]
Tr∂ fζ ϕ ∧ Tr∂ fζ (λ

β
fζ

(dλζ(2) ∧ · · · ∧ dλζ(d)))

+(−1) jρ
∫

[xζ(0),...,x̂ζ( jρ ),...,xζ(d)]
Tr∂ fζ ϕ∧Tr∂ fζ (λ

β
fζ

(dλζ(1)∧· · ·∧d̂λζ( jρ)∧· · ·∧dλζ(d))).

Multiplying Mζ,ρ,β(dϕ) by (−1) jρ−1

β! , we have

(−1) jρ−1

β!
∫

fζ
Tr fζ dϕ ∧ λ

β
fζ

(dλ fζ )ρ = β0

β!
∫

fζ
Tr fζ ϕ ∧ (λ

β−e0
fζ

dλζ(1) ∧ · · · ∧ dλζ(d))

−β jρ

β!
∫

fζ
Tr fζ ϕ ∧ (λ

β−e jρ
fζ

dλζ(1) ∧ · · · ∧ dλζ(d))

+ 1

β!
∫

[xζ(1),...,xζ(d)]
Tr∂ fζ ϕ ∧ Tr∂ fζ (λ

β
fζ

(dλζ(2) ∧ · · · ∧ dλζ(d)))

− 1

β!
∫

[xζ(0),...,x̂ζ( jρ ),...,xζ(d)]
Tr∂ fζ ϕ ∧Tr∂ fζ (λ

β
fζ

(dλζ(1) ∧ · · ·∧ d̂λζ( jρ) ∧ · · ·∧ dλζ(d))).

Finally, we notice that if β0 �= 0, then Tr[xζ(1),...,xζ(d)]λ
β
fζ

= 0 while if β jρ �= 0,

then Tr[xζ(0),...,x̂ζ( jρ ),...,xζ(d)]λ
β
fζ

= 0. This means that only two of these four terms are
different from zero.

In conclusion,

– If β0 �= 0 and β jρ �= 0, then

M̃ζ,ρ,β(dϕ) = 1

(β − e0)! M̂ζ,β−e0(ϕ) − 1

(β − e jρ )!
M̂ζ,β−e jρ (ϕ);
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– If β0 = 0 and β jρ �= 0, then

M̃ζ,ρ,β(dϕ) = − 1

(β − e jρ )!
M̂ζ,β−e jρ (ϕ) + 1

β! M̂ζ 0,β(ϕ),

being ζ 0 ∈ Σ(0 : d − 1, 0 : n) such that ζ 0(i) = ζ(i + 1);
– If β jρ = 0 and β0 �= 0, then

M̃ζ,ρ,β(dϕ) = 1

(β − e0)! M̂ζ,β−e0(ϕ) − 1

β! M̂ζ jρ ,β(ϕ),

being ζ jρ ∈ Σ(0 : d − 1, 0 : n) such that ζ jρ (i) = ζ(i) if i < jρ and ζ jρ (i) =
ζ(i + 1) if i ≥ jρ ;

– If β0 = β jρ = 0, then

M̃ζ,ρ,β(dϕ) = 1

β! M̂ζ 0,β(ϕ) − 1

β! M̂ζ jρ ,β(ϕ).

��
Proposition 4 allows to associate an oriented graph, M̃G , with the gradient operator

as follows: the set of nodes is the set of moments

M̃0 := {M̃ζ,ρ,β ∈ (P−
r+1Λ

0(T ))∗ : ζ ∈ Σ(0 : d, 0 : n), ρ ∈ Σ(0 : d − 1, 1 : d),

β ∈ I(d + 1, r − d), with 0 ≤ d ≤ n}
and the set of arcs is the set of moments

M̃1 := {M̃ζ,ρ,β ∈ (P−
r+1Λ

1(T ))∗ : ζ ∈ Σ(0 : d, 0 : n), ρ ∈ Σ(0 : d − 2, 1 : d),

β ∈ I(d + 1, r − (d − 1)) with 1 ≤ d ≤ n}.
The arc corresponding with the moment M̃ζ,ρ,β ∈ M̃1 goes from the node M̃ζI ,ρI ,β I

to the node M̃ζF ,ρF ,βF
, both in M̃0, if, for any ϕ ∈ Λ0(T ), we have

M̃ζ,ρ,β(dϕ) = M̃ζF ,ρF ,βF
(ϕ) − M̃ζI ,ρI ,β I

(ϕ).

As a consequence, also in this case, the all-nodes incidence matrix of the graph
M̃G is G

M withGM the matrix representing the gradient operator at the discrete level
when using these moments.

For k = 0, 1 let us consider the map g from the sets of moments M̃k to the set of
momentsMk defined as g(M̃ζ,ρ,β) := Mζ,ρ,β for d ∈ {k, . . . , n}, ζ ∈ Σ(0 : d, 0 : n),
ρ = ∅ if d = k or ρ ∈ Σ(0 : d−(k+1), 1 : d) if d �= k and β ∈ I(d+1, r−(d−k)).
Then, W̃k = Wk ◦ g is an isomorphism from the sets of moments M̃k to the set of
weights Wk and

W̃k(M̃ζ,ρ,β) := Wk( g(M̃ζ,ρ,β) ) = Wk(Mζ,ρ,β) ,
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for each M̃ζ,ρ,β ∈ M̃k . The isomorphism W̃k is illustrated here below:

Mk Wk

M̃k

Wk

g W̃k

Proposition 5 The two graphs MG and M̃G coincide, that is, by considering these
moments, the map W̃k preserves the matrix of the gradient operator in the following
sense: for any ϕ ∈ Λ0(T ), if

M̃ζ,ρ,β(dϕ) = M̃ζF ,ρF ,βF
(ϕ) − M̃ζI ,ρI ,β I

(ϕ)

then
(W̃1M̃ζ,ρ,β)(dϕ) = (W̃0M̃ζF ,ρF ,βF

)(ϕ) − (W̃0M̃ζI ,ρI ,β I
)(ϕ).

The proof of Proposition 5 is given in the Appendix. Here, we propose to illustrate
the claim of Proposition 5 by presenting three rather general examples for n = 3 and
r = 3. In the three cases, we proceed as follows:

– We start from M̃ζ,ρ,β(dϕ), and by IBP, we obtain the moments M̃ζF ,ρF ,βF
and

M̃ζI ,ρI ,β I
such that

M̃ζ,ρ,β(dϕ) = M̃ζF ,ρF ,βF
(ϕ) − M̃ζI ,ρI ,β I

(ϕ);

– We compute (W̃1M̃ζ,ρ,β)(dϕ), and by Stokes’ theorem, we write it as the differ-
ence of two weights

(W̃1M̃ζ,ρ,β)(dϕ) = WσF ,αF (ϕ) − WσI ,α I (ϕ);

– Finally, we check that, for L = I , F , we have

W̃0M̃ζL ,ρL ,βL
(ϕ) = WσL ,αL (ϕ).

Example 12 (d = 1) Let us consider M̃ζ,∅,β(dϕ) with ζ ∈ Σ(0 : 1, 0 : 3), ζ(0) = 1,
ζ(1) = 3 and β = (1, 2).

– M̃ζ,∅,β(dϕ) = 1
1! 2!Mζ,∅,β(dϕ) = 1

2

∫
[x1,x3] dϕ (λ1λ

2
3) by IBP, and using that on

the edge [x1, x3] one has dλ1 = −dλ3, we get

1
2

∫
[x1,x3] dϕ (λ1λ

2
3) = 1

2

(
− ∫

[x1,x3] ϕ d(λ1λ
2
3) + (ϕ λ1λ

2
3)(x3) − (ϕ λ1λ

2
3)(x1)

)

= − 1
2

∫
[x1,x3] ϕ d(λ1λ

2
3)

= − 1
2

∫
[x1,x3] ϕ λ23(dλ1) − ∫

[x1,x3] ϕ λ1λ3(dλ3)

= 1
2

∫
[x1,x3] ϕ λ23(dλ3) − ∫

[x1,x3] ϕ λ1λ3(dλ3)

= 1
2Mζ,ρ,(0,2)(ϕ) − Mζ,ρ,(1,1)(ϕ)

= M̃ζ,ρ,(0,2)(ϕ) − M̃ζ,ρ,(1,1)(ϕ),
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being ρ the unique element of Σ(0 : 0, 1 : 1).
– The corresponding weight is

(W̃1M̃ζ,∅,β)(dϕ) = (W1Mζ,∅,β)(dϕ) =
∫

τ(0,1,0,2)([x1,x3])
dϕ.

Since the boundary of τ(0,1,0,2)([x1, x3]) is

∂τ(0,1,0,2)([x1, x3]) = τ(0,1,0,2)(x3) − τ(0,1,0,2)(x1),

by Stokes’ theorem, we have

∫
τ(0,1,0,2)([x1,x3]) dϕ = ϕ(τ(0,1,0,2)(x3)) − ϕ(τ(0,1,0,2)(x1))

= ϕ(τ(0,0,0,3)(x1)) − ϕ(τ(0,1,0,2)(x1))
= W[x1],(0,0,0,3)(ϕ) − W[x1](0,1,0,2)(ϕ).

– Finally, we observe that

W̃0M̃ζ,ρ,(0,2)(ϕ) = W0
(∫

[x1,x3]
ϕ λ23(dλ3)

)

= W[x1],(0,0,0,3)(ϕ)

and

W̃0M̃ζ,ρ,(1,1)(ϕ) = W0
(∫

[x1,x3]
ϕ λ1λ3(dλ3)

)

= W[x1],(0,1,0,2)(ϕ),

respectively. �

Example 13 (d = 2) Let us consider themoment M̃ζ,ρ,β(dϕ)with ζ ∈ Σ(0 : 2, 0 : 3),
ζ(0) = 0, ζ(1) = 1, ζ(2) = 3, ρ ∈ Σ(0 : 0, 1 : 2), ρ(0) = 2, and β = (0, 1, 1).

– In this example, jρ = 1 and M̃ζ,ρ,β(dϕ) = (−1)1−1

1! 1!
∫
[x0,x1,x3] dϕ ∧ λ1λ3(dλ3). By

IBP, we obtain

∫
[x0,x1,x3] dϕ ∧ λ1λ3(dλ3)

= − ∫
[x0,x1,x3] ϕ d(λ1λ3dλ3) + ∫

∂[x0,x1,x3] ϕ ∧ λ1λ3(dλ3)

= − ∫
[x0,x1,x3] ϕ λ3(dλ1 ∧ dλ3) + ∫

[x1,x3] ϕ ∧ λ1λ3(dλ3)

since d(λ1λ3dλ3) = λ3dλ1 ∧ dλ3, λ1 = 0 in [x0, x3] and λ3 = 0 in [x0, x1].
– The corresponding weight is

(W̃1M̃ζ,ρ,β)(dϕ) =
∫

τ(0,1,0,2)([x0,x1])
dϕ.
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Since the boundary of τ(0,1,0,2)([x0, x1]) is

∂τ(0,1,0,2)([x0, x1]) = τ(0,1,0,2)(x1) − τ(0,1,0,2)(x0),

by Stokes’ theorem, we have

∫

τ(0,1,0,2)([x0,x1])
dϕ = ϕ(τ(0,1,0,2)(x1)) − ϕ(τ(0,1,0,2)(x0)).

– Finally, we observe that

W0
(∫

[x0,x1,x3]
ϕ λ3(dλ1 ∧ dλ3)

)

= W0(M̂ζ,(0,0,1)(ϕ)) = ϕ(τ(0,1,0,2)(x0))

and, setting ξ ∈ Σ(0 : 1, 0 : 3), ξ(0) = 1, ξ(1) = 3

W0
(∫

[x1,x3]
ϕ ∧ λ1λ3(dλ3)

)

= W0(M̂ξ,(1,1)(ϕ)) =ϕ(τ(0,1,0,2)(x1)),

respectively. (Note that, since k = 0, the moments do not depend on ρ.) ��

Example 14 (d = 3) Let us consider themoment M̃ζ,ρ,β(dϕ)with ζ ∈ Σ(0 : 3, 0 : 3),
ρ ∈ Σ(0 : 1, 1 : 3), ρ(0) = 1, ρ(1) = 3 and β = (0, 0, 0, 1).

– In this example jρ = 2 and

M̃ζ,ρ,β(dϕ) = (−1)2−1

1!
∫

[x0,x1,x2,x3]
dϕ ∧ λ3(dλ1 ∧ dλ3).

By IBP, we have

− ∫
[x0,x1,x2,x3] dϕ ∧ λ3(dλ1 ∧ dλ3)

= ∫
[x0,x1,x2,x3] ϕ ∧ d(λ3dλ1 ∧ dλ3) − ∫

∂[x0,x1,x2,x3] ϕ ∧ λ3(dλ1 ∧ dλ3)

= − ∫
[x1,x2,x3] ϕ ∧ λ3(dλ1 ∧ dλ3) − ∫

[x0,x1,x3] ϕ ∧ λ3(dλ1 ∧ dλ3)

= ∫
[x1,x2,x3] ϕ ∧ λ3(dλ2 ∧ dλ3) − ∫

[x0,x1,x3] ϕ ∧ λ3(dλ1 ∧ dλ3)

since d(λ3dλ1 ∧ dλ3) = 0, λ3dλ1 ∧ dλ3 = 0 on [x0, x2, x3] and [x0, x1, x2], and
dλ1 = −dλ2 − dλ3 on [x1, x2, x3].

– The corresponding weight is

(W̃1M̃ζ,ρ,β)(dϕ) =
∫

τ(0,1,0,2)([x0,x2])
dϕ.

Since the boundary of τ(0,1,0,2)([x0, x2]) is

∂τ(0,1,0,2)([x0, x2]) = τ(0,1,0,2)(x2) − τ(0,1,0,2)(x0),
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by Stokes’ theorem, we have

∫
τ(0,1,0,2)([x0,x2]) dϕ = ϕ(τ(0,1,0,2)(x2)) − ϕ(τ(0,1,0,2)(x0))

= ϕ(τ(0,0,1,2)(x1)) − ϕ(τ(0,1,0,2)(x0)),

where we have used that τ(0,1,0,2)(x2) = τ(0,0,1,2)(x1). We prefer this second form
because α = (0, 1, 0, 2) /∈ I[x2](4, 3) since 
α� = 1 < 2while α′ = (0, 0, 1, 2) ∈
I[x1](4, 3) since 
α′� = 2 ≥ 1.

– Finally, we observe that

W0
(∫

[x1,x2,x3]
ϕ ∧ λ3(dλ2 ∧ dλ3)

)

= ϕ(τ(0,0,1,2)(x1))

and

W0
(∫

[x0,x1,x3]
ϕ ∧ λ3(dλ1 ∧ dλ3)

)

= ϕ(τ(0,1,0,2)(x0)),

respectively. ��

6 Conclusions

The spacesP−
1 Λk(T )present a high geometrical feature, havingonedegree of freedom

per k-simplex in T , and thus being isomorphic to the space of simplicial k-cochains.
These spaces were indeed introduced in 1957 byWhitney in his book [26]. For r = 1,
the connection of Whitney’s spaces with mixed finite elements, appeared in the late
70 s, was developed by Bossavit in the 80s. With the time passing, in [22], we were
able to generalize this connection to r > 1 and to introduce newDoFs forP−

r+1Λ
k(T ),

the weights on the small k-simplices of T .
In this contribution, we have made a step forward, namely we have constructed

isomorphisms Wk , for any value of k ∈ {0, . . . , n}, between moments and weights
for fields in the discrete spaces P−

r+1Λ
k(T ), for r ≥ 0. Furthermore, we have shown

that, with a suitable definition of moments, the newly introduced isomorphisms W̃k

preserve, for example, the gradient matrix G (i.e., the matrix G has fixed entries Gi, j ,
whatever type of DoFs, weights or moments, are used in P−

r+1Λ
k(T )). We can thus

transfer, for any r ≥ 0, all achievements on tree-cotree construction for weights in, e.g,
[6, 23, 25] (see also references therein) to the case of moments (see, e.g., [18, 19]).
The construction of the isomorphism between weights and moments is compatible
(see Fig. 3, for k = 0, 1) with the powerful and general toolkit sharpened by Alain
Bossavit all along his career.

Appendix

We report here the proof of Proposition 5.

Proof Case d = k = 1, namely, ζ ∈ Σ(0 : 1, 0 : n), ρ = ∅ and β ∈ I(2, r).
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From Proposition 4,

M̃ζ,∅,β(dϕ) = β0

β!
∫

fζ
Tr fζ ϕ ∧ λ

β−e0
fζ

dλζ(1)

− β1

β!
∫

fζ
Tr fζ ϕ ∧ λ

β−e1
fζ

dλζ(1) + 1

β! (ϕλ
β
fζ

)(xζ(1)) − 1

β! (ϕλ
β
fζ

)(xζ(0)).

From Definition 5,

– if β0 �= 0,

W̃0
(

1

(β − e0)! M̂ζ ,β−e0

)

= Wζ0,(β−e0+e1)Eζ
;

– if β1 �= 0,

W̃0
(

1

(β − e1)! M̂ζ ,β−e1

)

= Wζ0,βEζ
;

– if β0 = 0, then β1 = r �= 0 and

W̃0
(

1

β! M̂ζ1,β

)

= Wζ1,rEζ1
;

– if β1 = 0, then β0 = r �= 0 and

W̃0
(

1

β! M̂ζ0,β

)

= Wζ0,rEζ0
.

From Definition 5,
(W̃1M̃ζ,∅,β)(dϕ) = Wζ,βEζ

(dϕ)

From (11),
Wζ,βEζ

(dϕ) = Wζ∗,β∗(ϕ) − Wζ0,βEζ
(ϕ)

being ζ∗ ∈ Σ(0 : 0, 0 : n) with ζ∗(0) = 
βEζ � and β∗ = βEζ + eζ(1) − e
βtext Eζ �.
In this case,


βEζ � =
{

ζ(0) ifβ0 �= 0
ζ(1) if β0 = 0.

Hence,

Wζ,βEζ
(dϕ) =

{
Wζ0,(β−e0+e1)Eζ

(ϕ) − Wζ0,βEζ
(ϕ) if β0 �= 0

Wζ1,βEζ
(ϕ) − Wζ0,βEζ

(ϕ) if β0 = 0,

since βEζ − eζ(0) + eζ(1) = (β − e0 + e1)Eζ . Notice also that if β0 = 0, then
βEζ = rEζ1 . On the other hand, if β1 = 0, then β0 = r and βEζ = rEζ0 .

In conclusion,
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– if β0 �= 0 and β1 �= 0,

Wζ,βEζ
(dϕ) = Wζ0,(β−e0+e1)Eζ

(ϕ) − Wζ0,βEζ
(ϕ);

– if β0 = 0, then β1 = r �= 0 and

Wζ,βEζ
(dϕ) = Wζ1,rEζ1

(ϕ) − Wζ0,βEζ
(ϕ)

– if β1 = 0, then β0 = r �= 0 and

Wζ,βEζ
(dϕ) = Wζ0,(β−e0+e1)Eζ

(ϕ) − Wζ0,rEζ0
(ϕ).

Case d > k = 1, namely, ζ ∈ Σ(0 : d, 0 : n), ρ ∈ Σ(0 : d − 2, 1 : d) and
β ∈ I(d + 1, r − (d − 1)).

M̃ζ,ρ,β(dϕ) = β0

β!
∫

fζ
Tr fζ ϕ ∧ (λ

β−e0
fζ

dλζ(1) ∧ · · · ∧ dλζ(d))

− β jρ

β!
∫

fζ
Tr fζ ϕ ∧ (λ

β−e jρ
fζ

dλζ(1) ∧ · · · ∧ dλζ(d))

+ 1

β!
∫

[xζ(1),...,xζ(d)]
Tr∂ fζ ϕ ∧ Tr∂ fζ (λ

β
fζ

(dλζ(2) ∧ · · · ∧ dλζ(d)))

− 1

β!
∫

[xζ(0),...,x̂ζ( jρ ),...,xζ(d)]
Tr∂ fζ ϕ ∧ Tr∂ fζ (λ

β
fζ

(dλζ(1) ∧ · · · ∧ d̂λζ( jρ ) ∧ · · · ∧ dλζ(d))).

From Definition 5:,

– if β0 �= 0,

W̃0
(

1

(β − e0)! M̂ζ ,β−e0

)

= Wζ0,(β−e0+(0,1,...,1))Eζ
;

– if β jρ �= 0,

W̃0

(
1

(β − e jρ )!
M̂ζ ,β−e jρ

)

= Wζ0,(β−e jρ +(0,1,...,1))Eζ
;

(notice that in this case, if we denote β̃ = β−e jρ +(0, 1, . . . , 1), one has β̃ jρ �= 0);
– if β0 = 0,

W̃0
(

1

β! M̂ζ 0 ,β

)

= Wζ1,(β−e1+(0,1,...,1))Eζ
;

– if β jρ = 0,

W̃0
(

1

β! M̂ζ jρ ,β

)

= Wζ0,(β−e jρ +(0,1,...,1))Eζ
;

(notice that in this case, if we denote β̃ = β−e jρ +(0, 1, . . . , 1), one has β̃ jρ = 0).
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(ζ 0 and ζ jρ are the elements of Σ(0 : d − 1, 0 : n) defined in the conclusion of the
proof of Proposition 4.)

From Definition 5,

(W̃1M̃ζ,ρ,β)(dϕ) = Wζ◦ρ∗,(β+e[[ρ]])Eζ
(dϕ) .

Since k = 1, fζ◦ρ∗ = [xζ(0), xζ( jρ)]. More precisely, η := ζ ◦ ρ∗ ∈ Σ(0 : 1, 0 : n),
η(0) = ζ(0) and η(1) = ζ( jρ). From Stokes’ theorem,

Wζ◦ρ∗,(β+e[[ρ]])Eζ
(dϕ) = Wζ jρ ,(β+e[[ρ]])Eζ

(ϕ) − Wζ0,(β+e[[ρ]])Eζ
(ϕ)

and

Wζ jρ ,(β+e[[ρ]])Eζ
(ϕ) =

{
Wζ0,(β+e[[ρ]]+e jρ −e0)Eζ

(ϕ) if β0 �= 0
Wζ1,(β+e[[ρ]]+e jρ −e1)Eζ

(ϕ) if β0 = 0.

Since e[[ρ]] = (0, 1, . . . , 1) − e jρ , hence

Wζ jρ ,(β+e[[ρ]])Eζ
(ϕ) =

{
Wζ0,(β−e0+(0,1,...,1))Eζ

(ϕ) if β0 �= 0
Wζ1,(β−e1+(0,1,...,1))Eζ

(ϕ) if β0 = 0.

In conclusion,

– if β0 �= 0, then

Wζ◦ρ∗,(β+e[[ρ]])Eζ
(dϕ) = Wζ0,(β−e0+(0,1,...,1))Eζ

(ϕ) − Wζ0,(β−e jρ +(0,1,...,1))Eζ
(ϕ);

– if β0 = 0, then

Wζ◦ρ∗,(β+e[[ρ]])Eζ
(dϕ) = Wζ1,(β−e1+(0,1,...,1))Eζ

(ϕ) − Wζ0,(β−e jρ +(0,1,...,1))Eζ
(ϕ);

and this ends the proof. ��
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