In this work, we consider some evolutionary models for k-currents in . We study a transport-type equation which can be seen as a generalisation of the transport/continuity equation and can be used to model the movement of singular structures in a medium, such as vortex points/lines/sheets in fluids or dislocation loops in crystals. We provide a detailed overview of recent results on this equation obtained mostly in (Bonicatto et al. Transport of currents and geometric Rademacher-type theorems. arXiv:2207.03922, 2022; Bonicatto et al. Existence and uniqueness for the transport of currents by Lipschitz vector fields. arXiv:2303.03218, 2023). We work within the setting of integral (sometimes merely normal) k-currents, covering in particular existence and uniqueness of solutions, structure theorems, rectifiability, and a number of Rademacher-type differentiability results. These differentiability results are sharp and can be formulated in terms of a novel condition we called “Negligible Criticality condition” (NC), which turns out to be related also to Sard’s Theorem. We finally provide a new stability result for integral currents satisfying (NC) in a uniform way.

On the Transport of Currents / Bonicatto, Paolo. - In: MILAN JOURNAL OF MATHEMATICS. - ISSN 1424-9286. - 2024:(2024). [10.1007/s00032-024-00394-9]

On the Transport of Currents

Bonicatto, Paolo
2024-01-01

Abstract

In this work, we consider some evolutionary models for k-currents in . We study a transport-type equation which can be seen as a generalisation of the transport/continuity equation and can be used to model the movement of singular structures in a medium, such as vortex points/lines/sheets in fluids or dislocation loops in crystals. We provide a detailed overview of recent results on this equation obtained mostly in (Bonicatto et al. Transport of currents and geometric Rademacher-type theorems. arXiv:2207.03922, 2022; Bonicatto et al. Existence and uniqueness for the transport of currents by Lipschitz vector fields. arXiv:2303.03218, 2023). We work within the setting of integral (sometimes merely normal) k-currents, covering in particular existence and uniqueness of solutions, structure theorems, rectifiability, and a number of Rademacher-type differentiability results. These differentiability results are sharp and can be formulated in terms of a novel condition we called “Negligible Criticality condition” (NC), which turns out to be related also to Sard’s Theorem. We finally provide a new stability result for integral currents satisfying (NC) in a uniform way.
2024
Bonicatto, Paolo
On the Transport of Currents / Bonicatto, Paolo. - In: MILAN JOURNAL OF MATHEMATICS. - ISSN 1424-9286. - 2024:(2024). [10.1007/s00032-024-00394-9]
File in questo prodotto:
File Dimensione Formato  
s00032-024-00394-9.pdf

accesso aperto

Descrizione: online first
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 646.74 kB
Formato Adobe PDF
646.74 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/409610
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact