Given a compact 3-manifold N without boundary, we prove that for a bumpy metric of positive scalar curvature the space of minimal surfaces having a uniform upper bound on the Morse index is always finite unless the manifold itself contains an embedded minimal RP^2. In particular, we derive a generic finiteness result whenever N does not contain a copy of RP^3 in its prime decomposition. We discuss the obstructions to any further generalization of such a result. When the metric g is required to be (scalar positive and) strongly bumpy (meaning that all closed, immersed minimal surfaces do not have Jacobi fields, a notion recently proved to be generic by B. White) the same conclusion holds true for any closed 3-manifold.

Generic finiteness of minimal surfaces with bounded Morse index / Carlotto, Alessandro. - In: ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE. - ISSN 2036-2145. - 17:3(2017), pp. 1153-1171. [10.2422/2036-2145.201510_003]

Generic finiteness of minimal surfaces with bounded Morse index

Carlotto, Alessandro
2017-01-01

Abstract

Given a compact 3-manifold N without boundary, we prove that for a bumpy metric of positive scalar curvature the space of minimal surfaces having a uniform upper bound on the Morse index is always finite unless the manifold itself contains an embedded minimal RP^2. In particular, we derive a generic finiteness result whenever N does not contain a copy of RP^3 in its prime decomposition. We discuss the obstructions to any further generalization of such a result. When the metric g is required to be (scalar positive and) strongly bumpy (meaning that all closed, immersed minimal surfaces do not have Jacobi fields, a notion recently proved to be generic by B. White) the same conclusion holds true for any closed 3-manifold.
2017
3
Carlotto, Alessandro
Generic finiteness of minimal surfaces with bounded Morse index / Carlotto, Alessandro. - In: ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE. - ISSN 2036-2145. - 17:3(2017), pp. 1153-1171. [10.2422/2036-2145.201510_003]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/409580
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact