We present a computational approach to determine the space of almost-inner derivations of a finite dimensional Lie algebra given by a structure constant table. We also present an example of a Lie algebra for which the quotient algebra of the almost-inner derivations modulo the inner derivations is non-abelian. This answers a question of Kunyavskii and Ostapenko.
A computational approach to almost-inner derivations / Dietrich, H.; de Graaf, W. A.. - In: JOURNAL OF SYMBOLIC COMPUTATION. - ISSN 0747-7171. - 125:(2024), pp. 1023121-1023129. [10.1016/j.jsc.2024.102312]
A computational approach to almost-inner derivations
Dietrich, H.
;de Graaf, W. A.
2024-01-01
Abstract
We present a computational approach to determine the space of almost-inner derivations of a finite dimensional Lie algebra given by a structure constant table. We also present an example of a Lie algebra for which the quotient algebra of the almost-inner derivations modulo the inner derivations is non-abelian. This answers a question of Kunyavskii and Ostapenko.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0747717124000166-main.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
289.91 kB
Formato
Adobe PDF
|
289.91 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione