We present a computational approach to determine the space of almost-inner derivations of a finite dimensional Lie algebra given by a structure constant table. We also present an example of a Lie algebra for which the quotient algebra of the almost-inner derivations modulo the inner derivations is non-abelian. This answers a question of Kunyavskii and Ostapenko.

A computational approach to almost-inner derivations / Dietrich, H.; de Graaf, W. A.. - In: JOURNAL OF SYMBOLIC COMPUTATION. - ISSN 0747-7171. - 125:(2024), pp. 1023121-1023129. [10.1016/j.jsc.2024.102312]

A computational approach to almost-inner derivations

Dietrich, H.
;
de Graaf, W. A.
2024-01-01

Abstract

We present a computational approach to determine the space of almost-inner derivations of a finite dimensional Lie algebra given by a structure constant table. We also present an example of a Lie algebra for which the quotient algebra of the almost-inner derivations modulo the inner derivations is non-abelian. This answers a question of Kunyavskii and Ostapenko.
2024
Dietrich, H.; de Graaf, W. A.
A computational approach to almost-inner derivations / Dietrich, H.; de Graaf, W. A.. - In: JOURNAL OF SYMBOLIC COMPUTATION. - ISSN 0747-7171. - 125:(2024), pp. 1023121-1023129. [10.1016/j.jsc.2024.102312]
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0747717124000166-main.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 289.91 kB
Formato Adobe PDF
289.91 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/409555
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact