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1. Introduction

Let g be a finite dimensional Lie algebra over a field F . A linear map δ : g → g is a derivation if for 
all a, b ∈ g it satisfies

δ([a,b]) = [δ(a),b] + [a, δ(b)].
The set of all derivations of g forms an F -vector space, denoted Der(g), and a short calculation shows 
that Der(g) is a Lie-subalgebra of gl(g). For every a ∈ g the adjoint homomorphism ad(a) : g → g, 
b �→ [a, b], is a derivation; these are the inner derivations of g and they form a subalgebra Inn(g) of 
Der(g); note that [ad(a), ad(b)](x) = ad([a, b])(x). In particular, the map ad : g → Inn(g) is a surjective 
homomorphism whose kernel is the centre z(g) of g, and Inn(g) is spanned by ad(b) where b runs 
over an F -basis of g. If δ is a derivation of g, then [δ, ad(a)] = ad(δ(a)) for all a ∈ g, which shows that 
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Inn(g) is an ideal of Der(g). A derivation δ of g is almost-inner if there exists a map Aδ : g → g such 
that for every a ∈ g it satisfies

δ(a) = [Aδ(a),a],
that is, δ(a) ∈ [g, a] for all a ∈ g. The map Aδ is neither unique nor linear in general; for example, one 
can modify each image of Aδ by adding a different central element of g. The F -space of all almost-
inner derivations on g is denoted AID(g). An almost-inner derivation δ is central almost-inner if there 
is some a ∈ g such that δ−ad(a) maps g into the centre of g. We follow the convention in Burde et al. 
(2018) and denote the space of central almost inner derivation of g by CAID(g). Since ad(a)(b) = [a, b]
for every a, b ∈ g, the inner derivation ad(a) is an almost-inner derivation with constant map Aad(a) =
a. More generally, in (Burde et al., 2018, Proposition 2.3) the following inclusion of Lie subalgebras of 
Der(g) is shown

Inn(g) � CAID(g) � AID(g) � Der(g).

Recall that Inn(g) = Der(g) for every semisimple Lie algebra over a field of characteristic 0, see for 
example (Humphreys, 1978, Theorem 5.3).

Clearly, Inn(g) is an ideal in each of these subalgebras. It is shown in (Burde et al., 2018, Proposi-
tion 2.4) that CAID(g) is an ideal in AID(g), but it remains open whether or not AID(g) is an ideal in 
Der(g): this is conjectured to be true in (Burde et al., 2018, Remark 2.5). For more details on known 
results, we refer to Burde et al. (2018, 2021); for example, it is known that AID(g) = CAID(g) = Inn(g)

for every complex Lie algebra g of dimension at most 4, see (Burde et al., 2018, Proposition 2.8).
Almost-inner derivations have first been considered by Gordon and Wilson Gordon and Wilson 

(1984) in a differential-geometric context. They have recently been studied by Saeedi and collabo-
rators (see, e.g. Amiri and Saeedi (2018); Sheikh-Mohseni et al. (2015)) and Burde, Dekimpe, and 
Verbeke (see, e.g. Burde et al. (2018, 2021); Verbeke (2020)). Most recently, Kunyavskii and Ostapenko 
Kunyavskii and Ostapenko (2023) used AID(g) to define an algebra-theoretic analog of the Tate-
Shafarevich group, the Tate-Shafarevich algebra of a Lie algebra g,

X(g) = AID(g)/Inn(g),

see (Kunyavskii and Ostapenko, 2023, Section 2). They point out that algebras with nonzero X(g) re-
veal important geometric phenomena. One of their main results is the proof that AID(g) is an ideal of 
Der(g) for nilpotent g, partially answering the aforementioned conjecture affirmatively. This also im-
plies that X(g) is an ideal of Out(g) = Der(g)/Inn(g) for nilpotent g, see (Kunyavskii and Ostapenko, 
2023, Theorem 2.5).

The first author of Kunyavskii and Ostapenko (2023) asked us for computational methods to de-
termine the subalgebra AID(g), and whether there is a Lie algebra g for which AID(g)/Inn(g) is 
non-abelian, see (Kunyavskii and Ostapenko, 2023, Question 4.1(i)). We develop such an approach 
in Section 2, and then discuss some computational examples (including an affirmative answer to the 
question) in Sections 3 and 4.

2. Computational approach

Let g be a Lie algebra over a field F , with basis B = {b1, . . . , bn} and corresponding structure con-
stants σ k

i, j , that is, for each i, j ∈ {1, . . . , n} we have [bi, b j] = ∑n
k=1 σ k

i, jbk . Let δ be an endomorphism 
of g, represented by an n × n matrix with entries d j,k , such that δ(b j) = ∑n

k=1 d j,kbk for each i. Since 
δ is a derivation if and only if δ([bi, b j]) = [δ(bi), b j] + [bi, δ(b j)] for all i, j, this translates to the 
following equations for each i, j, � ∈ {1, . . . , n}:

∑n

k=1
(σ k

i, jdk,� − σ �
k, jdi,k − σ �

i,kd j,k) = 0.

Since [bi, b j] = −[b j, bi], it suffices to consider i > j. This shows that a basis for the derivation algebra 
Der(g) can be computed by solving a system of n2(n + 1)/2 linear equations with n2 unknowns, see 
2
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also (de Graaf, 2000, Section 1.9). A basis of Inn(g) as a subalgebra can readily be computed by 
determining the matrices (with respect to B) of the adjoints ad(bi) for every i ∈ {1, . . . , n}.

In conclusion, linear algebra methods can be used to compute Der(g) and Inn(g), and therefore 
also a complement subspace U � Der(g) such that

Der(g) = Inn(g) ⊕ U .

In the sequel we fix one such space U . Since Inn(g) � AID(g), to determine AID(g), it suffices to 
compute the space U ∩ AID(g).

Definition 2.1. For z0 ∈ g let Dz0 be the subspace of U that consists of all derivations δ that act as 
an inner derivation on the 1-dimensional subspace spanned by z0; note that δ is not inner since 
U ∩ Inn(g) = {0}. In other words, δ ∈ Dz0 if and only if δ ∈ U and δ(z0) = [z0, x] for some x ∈ g.

If z0 ∈ g and ψz0 denotes the linear map

ψz0 : U ⊕ g→ g, (δ, x) �→ δ(z0) − [z0, x],
then Dz0 is the image of the kernel ker ψz0 under the projection U ⊕ g → U . This shows that we can 
compute Dz0 by solving a linear equation system. In particular,

U ∩ AID(g) =
⋂

z0∈g Dz0 .

Clearly, a finite intersection suffices to construct U ∩ AID(g) in this way. However, it is not clear how 
to chose suitable elements z0, and how to establish that the intersection is as small as possible.

We fix the previous notation and, throughout, let V be a subspace of U , for example, the intersec-
tion of multiple spaces Dz0 for arbitrarily chosen elements z0 ∈ g, so that

AID(g) � Inn(g) ⊕ V .

Let {δ1, . . . , δs} be a basis of V . How to decide whether δ = ∑s
i=1 diδi ∈ V lies in AID(g)? The following 

proposition provides an answer, but we need some notation before we can state it.
For a vector z = (z1, . . . , zn) ∈ F n define the n × n matrix M(z) as

M(z) = (mk, j(z))k, j where each mk, j(z) =
∑n

i=1
ziσ

k
i, j;

recall that the σ k
i, j are the structure constants with respect to the basis {b1, . . . , bn} of g. Also define 

bz ∈ g by

bz = z1b1 + · · · + znbn.

For δ ∈ V write δ(bz) = c1(z)b1 +· · ·+ cn(z)bn with each ci(z) ∈ F , and define the column vector vδ(z)
as

vδ(z) = (c1(z), . . . , cn(z))ᵀ.

Lastly, denote by

Mδ(z) = [M(z)|vδ(z)]
the augmented matrix M(z) with additional column vδ(z).

Proposition 2.2. The derivation δ ∈ V lies in AID(g) if and only if for all z ∈ F n

rank(M(z)) = rank(Mδ(z)).
3
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Proof. The derivation δ is almost-inner if and only if for every z ∈ F n there exists some x ∈ g such 
that δ(bz) = [bz, x]. Writing x = x1b1 + . . . + xnbn we have

[bz, x] =
∑n

i, j=1
zi x j[bi,b j] =

∑n

k=1
(
∑n

i, j=1
zi x jσ

k
i, j)bk.

Using the definition of vδ(z) and its components ck(z), the derivation δ lies in AID(g) if and only if 
for all z1, . . . , zn ∈ F , there exist x1, . . . , xn ∈ F such that for each k ∈ {1, . . . , n}

ck(z) = (
∑n

i, j=1
zi x jσ

k
i, j) =

∑n

j=1
(
∑n

i=1
ziσ

k
i, j)x j .

The latter holds if and only if

M(z) · (x1, . . . , xn)
ᵀ = vδ(z) (2.1)

where M(z) and vδ(z) are as defined prior to the proposition. We have that (2.1) has a solution if and 
only if vδ(z) lies in the column space of M(z). The claim follows. �

Note that mk, j(z) and ci(z) are (linear) polynomials in z1, . . . , zn . Now let z = (z1, . . . , zn) be the 
vector of indeterminates of F [z1, . . . , zn] and consider the corresponding matrices M(z) and Mδ(z). 
The rank of a matrix can be defined as the largest integer r such that there exists a nonzero r × r
minor, that is, a nonzero determinant of an r × r submatrix. For a fixed r, denote by Kr(z) and 
Kδ,r(z) the set of all r × r minors of M(z) and of Mδ(z), respectively; so the elements in Kr(z) and 
Kδ,r(z) are polynomials in F [z1, . . . , zn]. Let Ir(z) and Iδ,r(z) be the ideals generated by Kr(z) and 
Kδ,r(z), respectively. Recall that the radical of an ideal I in a ring R is the ideal 

√
I = {r ∈ R : rn ∈

I for some n ∈N}.

Proposition 2.3. Let δ ∈ V be a derivation. If δ is not an almost-inner derivation, then there exists some r
and w ∈ Iδ,r(z) with w /∈ √

Ir(z). Conversely, if the field is algebraically closed and there exist some r and 
w ∈ Iδ,r(z) such that w /∈ √

Ir(z), then δ is not an almost-inner derivation.

Proof. If δ is not an almost-inner derivation, then there exists z̃ ∈ F n such that r = rank(Mδ(z̃)) is 
larger than rank(M(z̃)), that is, there is some r × r minor w(z̃) of Mδ(z̃) that does not vanish, but all 
r × r minors of M(z̃) are 0. Thus, z̃ is a common root of all elements in Ir(z), but not of all elements 
in Iδ,r(z). In particular, w(z) lies in Iδ,r(z), but not in 

√
Ir(z).

Conversely, suppose that there exists some r and w ∈ Iδ,r(z) such that w /∈ √
Ir(z). Over an al-

gebraically closed field, Hilbert’s Nullstellensatz (Cox et al., 2015, Theorem 4.1.2) says that 
√
Ir(z)

is exactly the set of all polynomials that vanish on all the common roots of the elements in Ir (z). 
This means that there is a common root z̃ for all the elements in Ir(z), but z̃ is not a root of w(z). 
This implies that rank(Mδ,r(z̃)) is greater than rank(Mr(z̃)), and therefore δ is not an almost-inner 
derivation by Proposition 2.2. �

We note that deciding membership in the radical can be achieved without computing the radical, 
see (Cox et al., 2015, Proposition 4.2.8).

Corollary 2.4. Let δ ∈ V be a derivation.

a) Over an algebraically closed field, δ ∈ AID(g) if and only if Iδ,r(z) ⊆ √
Ir(z) for every r > 1.

b) If Iδ,r(z) ⊆ √
Ir(z) for each r > 1, then δ ∈ AID(g) (even for non-algebraically closed fields).

Remark 2.5. If the latter condition in part a) of the corollary does not hold, then there exists some 
r × r minor w(z) ∈ Iδ,r(z) that does not lie in 

√
Ir(z); in particular, there exists a point z̃ such that 

w(z̃) is not zero, but z̃ is a common root of all the elements in Ir(z). One can attempt to find z̃ by 
working in the polynomial ring F [z1, . . . , zn, y] and finding a common zero of the polynomials in the 
ideal generated by Kr(z) and w(z)y − 1: such a common zero annihilates every generator in Kr(z), 
4
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but due to w(z̃)y = 1, it cannot be a zero of w(z). Once such an element z̃ ∈ F n is found, one can 
reduce V to V ∩ Dbz̃

. Note that the latter intersection is smaller than V since δ ∈ V , but δ /∈ Dbz̃
. 

Eventually, one can iterate this method to reduce V to a smaller subspace such that one can verify 
that each generator is an almost-inner derivation. However, it is still a computational challenge to 
find these suitable points z̃. In particular, for fields that are not algebraically closed, it is not even 
known whether the problem of finding such points is decidable, cf. Hilbert’s 10th Problem over Q, 
see (Poonen, 2017, Section 2.6.4).

3. Computational examples

Our methods can quickly deal with small-dimensional Lie algebras. For example, we went through 
the classification of 8-dimensional filiform Lie algebras given in Ancochéa-Bermúdez and Goze (1988). 
For the cases where the Lie algebra depends on a parameter we set it equal to 1. Our methods readily 
compute the quotient AID(g)/Inn(g), and it has dimension 0, 1, or 2 in all cases. When the dimension 
of the Lie algebra increases we can still quickly get a good idea of AID(g)/Inn(g) by computing the 
intersection of many spaces Dz0 for arbitrarily chosen z0. However, proving that a given derivation is 
almost-inner by the minors-method described above quickly becomes cumbersome due to the large 
number of minors that has to be considered.

We now illustrate our method with some computations in the algebra system Magma Bosma et al. 
(1997).

Example 3.1. We consider the complex Lie algebra g = g6,23 of (Verbeke, 2020, p. 112). It is a 
6-dimensional Lie algebra with basis {b1, . . . , b6} whose non-zero commutators are [b1, b2] = b3, 
[b1, b3] = b5, [b1, b4] = b6, and [b2, b4] = b5. The complement space to Inn(g) in Der(g) has dimen-
sion 10, and the intersection of a few spaces Dz quickly finds a 2-dimensional subspace U � Der(g)
such that AID(g) � Inn(g) ⊕ U . We choose a basis {δ1, δ2} of U and let δ = d1δ1 + d2δ2, such that 
Equation (2.1) reads

⎛
⎝

−z2 z1 0 0
−z3 −z4 z1 z2
−z4 0 0 z1

⎞
⎠ · (x1, x2, x3, x4)

ᵀ = (−d1z1,−d2z2,0)ᵀ.

To show that δ1 ∈ AID(g), we consider d1 = 1 and d2 = 0, and the matrices

M(z) =
⎛
⎝

−z2 z1 0 0
−z3 −z4 z1 z2
−z4 0 0 z1

⎞
⎠ and Mδ(z)

⎛
⎝

−z2 z1 0 0 −z1
−z3 −z4 z1 z2 0
−z4 0 0 z1 0

⎞
⎠ .

The following Magma code establishes that Iδ,3(z) ⊆ √
I3(z) and Iδ,2(z) ⊆ √

I2(z), and now Corol-
lary 2.4 proves that δ1 is in AID(g). The same computation with Mδ(z) adjusted to δ = δ2 proves that 
δ2 ∈ AID(g). Thus, in this case, AID(g) = Inn(g) ⊕ U for some 2-dimensional U .

Mv := Matrix([[-z2,z1,0,0,0],[-z3,-z4,z1,z2,-z2],[-z4,0,0,z1,0]]);
M := Matrix([[-z2,z1,0,0],[-z3,-z4,z1,z2],[-z4,0,0,z1]]);
I3 := Radical(ideal<P|Minors(M,3)>);
I3v := ideal<P|Minors(Mv,3)>;
I2 := Radical(ideal<P|Minors(M,2)>);
I2v := ideal<P|Minors(Mv,2)>;
forall(i){ i : i in GroebnerBasis(I2v) | i in I2};
//true
forall(i){ i : i in GroebnerBasis(I3v) | i in I3};
//true

Example 3.2. Now let g be the complex 5-dimensional Lie algebra of (Verbeke, 2020, Lemma 8.2.11), 
whose non-vanishing brackets are [b1, b4] = b1, [b1, b5] = −b2, [b2, b4] = b2, [b2, b5] = b1, [b4, b5] =
5
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b3. A complement U to Inn(g) in Der(g) has dimension 2, and we choose a basis {δ1, δ2}. For δ = δ1, 
we obtain the following calculations:

C<i> := CyclotomicField(4);
P<z1,z2,z3,z4,z5,x1,x2,x3,x4,x5,y,d1,d2>:= PolynomialRing(C,13);
m := Matrix([[-z4,-z5,0,z1,z2],[z5,-z4,0,z2,-z1],[0,0,0,-z5,z4]]);
mv := Matrix([[-z4,-z5,0,z1,z2,-z1],[z5,-z4,0,z2,-z1,-z2],

[0,0,0,-z5,z4,0]]);
I3 := Radical(ideal<P|Minors(m,3)>);
I3v := ideal<P|Minors(mv,3)>;
forall(i){ i : i in GroebnerBasis(I3v) | i in I3};
//false; next, we try to find a suitable \tilde z
gb := GroebnerBasis(I3);
exists(min){min : min in Minors(mv,3) | not min in I3};
// true
Append(~gb, min*y - 1);
gb := GroebnerBasis(tmp);
// [ z1^2*z5*y + z2^2*z5*y - 1, z4^2 + z5^2 ]
> [Evaluate(f,[1,1,0,-i,1,0,0,0,0,0,1/2,0,0]) : f in gb];
// [ 0, 0 ]

At the end of this computation we have found z̃ = (1, 1, 0, −i, 1) and y = 1/2, where i = ı is a 
primitive 4-th root of unity, such that Dz with z = b1 + b2 − ıb4 + b5 satisfies dim(U ∩ Dz) = 1. 
One can now iterate this process and eventually establish that AID(g) = Inn(g). The quoted code also 
shows that over the subfield R it is not possible to find such an element z̃: the equation z2

4 + z2
5 = 0

forces z4 = z5 = 0, but then z2
1z5 y + z2

2z5 y − 1 = −1 is never 0.

Example 3.3. In (Burde and Moens, 2020, Propositions 3.5 and 3.8) two examples of Lie algebras g
over fields of positive characteristic were given such that the quotient Der(g)/Inn(g) is simple and 
non-solvable. The first example is psl(3, F ), where F is a field of characteristic 3. The second example 
is the ideal J generated by the short root vectors of the simple Lie algebra of type F4 over a field of 
characteristic 2. In both cases, by computing the intersection of a small number of spaces Dz0 , our 
methods quickly show that AID(g) = Inn(g).

4. A non-abelian X(g)

We now provide an affirmative answer to (Kunyavskii and Ostapenko, 2023, Question 4.1(i)) in the 
positive characteristic case (Kunyavskii and Ostapenko, 2023, Section 4.1.2), namely, we construct a 
Lie algebra g such that X(g) = AID(g)/Inn(g) is non-abelian. The Lie algebra g is defined by a finite 
p-group constructed in (Sah, 1968, Theorem p. 67). We briefly describe the construction of that group, 
and then comment on the construction of g and computation of AID(g).

Let p be a prime, let F = Fq be the field with q = p3 elements, and let R = F 3 be the 3-
dimensional F -vector space. Denote by {1, π, π2} an F -basis of R and define a left multiplication 
on R by π f = f qπ for f ∈ F , and π iπ j = π i+ j if i + j � 2 and π iπ j = 0 otherwise. The multiplica-
tive group U1(R) = 1 + Rπ acts via left multiplication on the additive group R , giving rise to the split 
extension

G p = (R,+) � U1(R).

If {1, α, α2} is a Zp-basis of F , then U1(R) is generated by {1 +αiπ j | i = 0, 1, 2; j = 1, 2}, the centre 
Z of U1(R) is generated by {1 + αiπ2 | i = 0, 1, 2}, and Z ∼= U1(R)/Z ∼= (Z/pZ)3. Thus, G p can be 
described as an extension C9

p � (C3
p .C3

p) of order p15; here Cn denotes a cyclic group of order n.
6



H. Dietrich and W.A. de Graaf Journal of Symbolic Computation 125 (2024) 102312
For p = 2, 3 we have constructed G p in GAP GAP Group as a group given by a polycyclic presen-
tation. For p = 2, the group U1(R) can be reconstructed in GAP as SmallGroup(64,82); the group G2

has order 215 = 32768 and can be reconstructed in GAP as PcGroupCode(c,32768), where

c = 7967110418574553081670398114259915186817035422811746306474238743720883

1725611328458148063967477625450818367910830831150163051940361653140207

3356972696434071737990061156240486161235975.

For p = 3, the groups U1(R) and G3 are isomorphic to the groups constructed in GAP asSmall-
Group(729, 122) and PcGroupCode(c,14348907), where

c = 2394257517593284993878744790303485055907699526905097239261910228496569

7037971664120902046779276348374342035162654519026274575815342804754951

7041150514460591292399372711230903481919137251508110943248577780211134

77919143155502672960892416353913323520.

There are several standard ways to attach a Lie algebra to a finite p-group. Here we use the p-central 
series G p = G1

p � G2
p � G3

p � G4
p = 1. The quotients Gi/Gi+1 are elementary abelian p-groups, and 

hence can be viewed as vector spaces over the field Fp with p elements. The Lie algebra gp is the 
direct sum of these spaces and the Lie bracket on gp is induced by the commutator in G p . We refer 
to (de Graaf, 2000, §1.4) for a precise account (in this reference the Jennings series is used, but for 
the p-central series it works in the same way).

For g2 and g3 we computed the intersection of a large number of spaces Dz0 for arbitrarily chosen 
z0 ∈ gp . In both cases, this quickly yields a space of dimension 21 of possible almost-inner derivations 
that are not inner. By running over all elements z0 ∈ gp , we then proved that this space indeed 
consists of almost-inner derivations. We note that when extending the field and considering the Lie 
algebras F8 ⊗F2 g2 and F27 ⊗F3 g3, it is quickly shown by computing the intersection of a number 
of spaces Dz0 that the algebra of almost-inner derivations is equal to the algebra of inner derivations. 
This is reflected by the fact that for the ideals generated by minors we have many k such that Iδ,k(z)
is not contained in 

√
Ik(z). However, these ideals turn out to be too complicated to be analysed 

further in detail.
We provide some more details for g3: this algebra has basis {v1, . . . , v15} with multiplication 

table given in Fig. 1. The algebra of derivations of g3 has dimension 45, and the ideal of inner 
derivations Inn(g3) has dimension 12. In the subalgebra AID(g3) of almost-inner derivations satis-
fies AID(g3) = Inn(g3) ⊕ U where U is a subalgebra of dimension 21. In Fig. 2 we explicitly define 
two non-commuting elements d1 and d2 of U .
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[v1, v2] = 2v7, [v3, v4] = 2v11,

[v1, v3] = v7 + 2v8, [v3, v5] = v11 + 2v12,

[v1, v4] = 2v10, [v3, v6] = 2v10 + v12,

[v1, v5] = v11, [v3, v10] = 2v13 + v14,

[v1, v6] = v12, [v3, v11] = v13 + 2v14 + 2v15,

[v1, v10] = 2v13, [v3, v12] = v13 + v14 + 2v15,

[v1, v11] = v14 + v15, [v4, v7] = v13,

[v1, v12] = 2v15, [v4, v8] = 2v15,

[v2, v3] = 2v8 + v9, [v4, v9] = v14 + v15,

[v2, v4] = 2v12, [v5, v7] = v14 + v15,

[v2, v5] = 2v10 + v12, [v5, v8] = 2v13 + v15,

[v2, v6] = v11, [v5, v9] = 2v14 + v15,

[v2, v10] = v13 + 2v15, [v6, v7] = 2v15,

[v2, v11] = v13 + 2v14 + v15, [v6, v8] = 2v14 + 2v15,

[v2, v12] = v14 + 2v15, [v6, v9] = 2v13 + v15.

Fig. 1. Structure constants for g3; if [vi , v j ] is not listed, then [vi , v j ] = 0.

d1(v2) = v7, d2(v2) = v10,

d1(v3) = 2v7 + v8, d2(v7) = v13,

d1(v4) = 2v11 + 2v12, d2(v8) = v13,

d1(v5) = 2v10, d2(v9) = 2v13 + 2v14,

d1(v6) = v10,

d1(v10) = v14,

d1(v11) = v13,

d1(v12) = 2v13.

Fig. 2. Definitions of two non-commuting elements of U ; if di(vk) is not listed, then di(vk) = 0.

References

Amiri, A., Saeedi, F., 2018. On pointwise inner derivations of Lie algebras. Asian-Eur. J. Math. 11 (5), 1850070.
Ancochéa-Bermúdez, J.M., Goze, M., 1988. Classification des algèbres de Lie filiformes de dimension 8. Arch. Math. (Basel) 50 

(6), 511–525.
Bosma, W., Cannon, J., Playoust, C., 1997. The magma algebra system I: the user language. J. Symb. Comput. 24, 235–265.
Burde, D., Dekimpe, K., Verbeke, B., 2018. Almost inner derivations of Lie algebras. J. Algebra Appl. 17 (11), 1850214.
Burde, D., Dekimpe, K., Verbeke, B., 2021. Almost inner derivations of Lie algebras II. J. Algebra Comput. 31, 341–364.
Burde, D., Moens, W.A., 2020. A Zassenhaus conjecture and CPA-structures on simple modular Lie algebras. J. Algebra 559 

(529–546).
Cox, D.A., Little, J., O’Shea, D., 2015. Ideals, Varieties, and Algorithms. Undergrad. Texts Math. Springer, Cham.
Gordon, C.S., Wilson, E.N., 1984. Isospectral deformations of compact solvmanifolds. J. Differ. Geom. 19, 241–256.
de Graaf, W.A., 2000. Lie Algebras: Theory and Algorithms. North-Holland Mathematical Library.
GAP Group. GAP – groups, algorithms and programming. https://gap -system .org.
8

http://refhub.elsevier.com/S0747-7171(24)00016-6/bibA29D135610AEA3AEA19E8FDB6062B539s1
http://refhub.elsevier.com/S0747-7171(24)00016-6/bib595B4FC924D1B0615B395B2DAD14F950s1
http://refhub.elsevier.com/S0747-7171(24)00016-6/bib595B4FC924D1B0615B395B2DAD14F950s1
http://refhub.elsevier.com/S0747-7171(24)00016-6/bibCC8F15265A61D147189AC41C1C8E0A0Ds1
http://refhub.elsevier.com/S0747-7171(24)00016-6/bib9E62A62839A966F15271F53487700C77s1
http://refhub.elsevier.com/S0747-7171(24)00016-6/bib7913D705DBF314E2E9F3575043AE4B4Es1
http://refhub.elsevier.com/S0747-7171(24)00016-6/bib5089FA881630360A9B3361469C1A0C5Ds1
http://refhub.elsevier.com/S0747-7171(24)00016-6/bib5089FA881630360A9B3361469C1A0C5Ds1
http://refhub.elsevier.com/S0747-7171(24)00016-6/bib45641E46F614125065559617B3EFC5A2s1
http://refhub.elsevier.com/S0747-7171(24)00016-6/bib8FB744B51A1F14E5E8CDA4E4AEC68E2Fs1
http://refhub.elsevier.com/S0747-7171(24)00016-6/bib41C086FE98693263323C4914626B178Fs1
https://gap-system.org


H. Dietrich and W.A. de Graaf Journal of Symbolic Computation 125 (2024) 102312
Humphreys, J.E., 1978. Introduction to Lie Algebras and Representation Theory. Grad. Texts Math., vol. 9. Springer.
Kunyavskii, B., Ostapenko, V.Z., 2023. Tate-Shafarevich groups and algebras. Int. J. Algebra Comput. 33 (4), 819–836.
Poonen, B., 2017. Rational Points on Varieties. Grad. Stud. Math., vol. 186. Americ. Math. Soc., Providence, RI.
Sah, C.-H., 1968. Automorphisms of finite groups. J. Algebra 10 (47–68).
Sheikh-Mohseni, S., Saeedi, F., Badrkhani Asl, M., 2015. On special subalgebras of derivations of Lie algebras. Asian-Eur. J. Math. 8 

(2), 1550032.
Verbeke, B., 2020. Almost inner derivations of Lie algebras. PhD thesis. Arenberg Doctoral School, KU Leuven. https://lirias .

kuleuven .be /retrieve /587183.
9

http://refhub.elsevier.com/S0747-7171(24)00016-6/bib98858152B109F361D6A7324615DA8C1Fs1
http://refhub.elsevier.com/S0747-7171(24)00016-6/bib4DBF44C6B1BE736EE92EF90090452FC2s1
http://refhub.elsevier.com/S0747-7171(24)00016-6/bibA2479F1962AE113318772993B7CAA9D0s1
http://refhub.elsevier.com/S0747-7171(24)00016-6/bib2D894669B88CF8EE078B906040BAA4D4s1
http://refhub.elsevier.com/S0747-7171(24)00016-6/bib0E58DE485A0949C5BBAAF3ACCCFBE78As1
http://refhub.elsevier.com/S0747-7171(24)00016-6/bib0E58DE485A0949C5BBAAF3ACCCFBE78As1
https://lirias.kuleuven.be/retrieve/587183
https://lirias.kuleuven.be/retrieve/587183

	A computational approach to almost-inner derivations
	1 Introduction
	2 Computational approach
	3 Computational examples
	4 A non-abelian X(g)
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


