Recent efforts have succeeded in surveying open chromatin at the single-cell level, but high-throughput, single-cell assessment of heterochromatin and its underlying genomic determinants remains challenging. We engineered a hybrid transposase including the chromodomain (CD) of the heterochromatin protein-1α (HP-1α), which is involved in heterochromatin assembly and maintenance through its binding to trimethylation of the lysine 9 on histone 3 (H3K9me3), and developed a single-cell method, single-cell genome and epigenome by transposases sequencing (scGET-seq), that, unlike single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq), comprehensively probes both open and closed chromatin and concomitantly records the underlying genomic sequences. We tested scGET-seq in cancer-derived organoids and human-derived xenograft (PDX) models and identified genetic events and plasticity-driven mechanisms contributing to cancer drug resistance. Next, building upon the differential enrichment of closed and open chromatin, we devised a method, Chromatin Velocity, that identifies the trajectories of epigenetic modifications at the single-cell level. Chromatin Velocity uncovered paths of epigenetic reorganization during stem cell reprogramming and identified key transcription factors driving these developmental processes. scGET-seq reveals the dynamics of genomic and epigenetic landscapes underlying any cellular processes.

Chromatin Velocity reveals epigenetic dynamics by single-cell profiling of heterochromatin and euchromatin / Tedesco, M.; Giannese, F.; Lazarevic, D.; Giansanti, V.; Rosano, D.; Monzani, S.; Catalano, I.; Grassi, E.; Zanella, E. R.; Botrugno, O. A.; Morelli, L.; Panina Bordignon, P.; Caravagna, G.; Bertotti, A.; Martino, G.; Aldrighetti, L.; Pasqualato, S.; Trusolino, L.; Cittaro, D.; Tonon, G.. - In: NATURE BIOTECHNOLOGY. - ISSN 1087-0156. - 40:2(2022), pp. 235-244. [10.1038/s41587-021-01031-1]

Chromatin Velocity reveals epigenetic dynamics by single-cell profiling of heterochromatin and euchromatin

Morelli L.;Martino G.;Tonon G.
Co-ultimo
2022-01-01

Abstract

Recent efforts have succeeded in surveying open chromatin at the single-cell level, but high-throughput, single-cell assessment of heterochromatin and its underlying genomic determinants remains challenging. We engineered a hybrid transposase including the chromodomain (CD) of the heterochromatin protein-1α (HP-1α), which is involved in heterochromatin assembly and maintenance through its binding to trimethylation of the lysine 9 on histone 3 (H3K9me3), and developed a single-cell method, single-cell genome and epigenome by transposases sequencing (scGET-seq), that, unlike single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq), comprehensively probes both open and closed chromatin and concomitantly records the underlying genomic sequences. We tested scGET-seq in cancer-derived organoids and human-derived xenograft (PDX) models and identified genetic events and plasticity-driven mechanisms contributing to cancer drug resistance. Next, building upon the differential enrichment of closed and open chromatin, we devised a method, Chromatin Velocity, that identifies the trajectories of epigenetic modifications at the single-cell level. Chromatin Velocity uncovered paths of epigenetic reorganization during stem cell reprogramming and identified key transcription factors driving these developmental processes. scGET-seq reveals the dynamics of genomic and epigenetic landscapes underlying any cellular processes.
2022
2
Tedesco, M.; Giannese, F.; Lazarevic, D.; Giansanti, V.; Rosano, D.; Monzani, S.; Catalano, I.; Grassi, E.; Zanella, E. R.; Botrugno, O. A.; Morelli, L.; Panina Bordignon, P.; Caravagna, G.; Bertotti, A.; Martino, G.; Aldrighetti, L.; Pasqualato, S.; Trusolino, L.; Cittaro, D.; Tonon, G.
Chromatin Velocity reveals epigenetic dynamics by single-cell profiling of heterochromatin and euchromatin / Tedesco, M.; Giannese, F.; Lazarevic, D.; Giansanti, V.; Rosano, D.; Monzani, S.; Catalano, I.; Grassi, E.; Zanella, E. R.; Botrugno, O. A.; Morelli, L.; Panina Bordignon, P.; Caravagna, G.; Bertotti, A.; Martino, G.; Aldrighetti, L.; Pasqualato, S.; Trusolino, L.; Cittaro, D.; Tonon, G.. - In: NATURE BIOTECHNOLOGY. - ISSN 1087-0156. - 40:2(2022), pp. 235-244. [10.1038/s41587-021-01031-1]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/408871
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 34
  • Scopus 48
  • ???jsp.display-item.citation.isi??? ND
social impact