In this paper, we study properties of the Chow ring of rational homogeneous varieties of classical type, more concretely, effective zero divisors of low codimension, and a related invariant called effective good divisibility. This information is then used to study the question of (non)existence of nonconstant maps among these varieties, generalizing previous results for projective spaces and Grassmannians.

Maximal disjoint Schubert cycles in rational homogeneous varieties / Muñoz, R.; Occhetta, G.; Solá Conde, E. L.. - In: MATHEMATISCHE NACHRICHTEN. - ISSN 0025-584X. - 2024, 297:1(2024), pp. 174-194. [10.1002/mana.202300036]

Maximal disjoint Schubert cycles in rational homogeneous varieties

Occhetta, G.
;
Solá Conde, E. L.
2024-01-01

Abstract

In this paper, we study properties of the Chow ring of rational homogeneous varieties of classical type, more concretely, effective zero divisors of low codimension, and a related invariant called effective good divisibility. This information is then used to study the question of (non)existence of nonconstant maps among these varieties, generalizing previous results for projective spaces and Grassmannians.
2024
1
Muñoz, R.; Occhetta, G.; Solá Conde, E. L.
Maximal disjoint Schubert cycles in rational homogeneous varieties / Muñoz, R.; Occhetta, G.; Solá Conde, E. L.. - In: MATHEMATISCHE NACHRICHTEN. - ISSN 0025-584X. - 2024, 297:1(2024), pp. 174-194. [10.1002/mana.202300036]
File in questo prodotto:
File Dimensione Formato  
Mathematische Nachrichten - 2023 - Muñoz - Maximal disjoint Schubert cycles in rational homogeneous varieties.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 689.98 kB
Formato Adobe PDF
689.98 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/403613
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact