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Abstract
In this paper, we study properties of the Chow ring of rational homogeneous vari-
eties of classical type,more concretely, effective zero divisors of low codimension,
and a related invariant called effective good divisibility. This information is then
used to study the question of (non)existence of nonconstant maps among these
varieties, generalizing previous results for projective spaces and Grassmannians.
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1 INTRODUCTION

Throughout this paper, all the varieties will be projective and defined over the field of complex numbers. Given such a
smooth variety𝑀 we will denote by

A∙(𝑀) ∶=

dim(𝑀)⨁
𝑖=0

A𝑖(𝑀)

the Chow ring of 𝑀; the effective good divisibility of 𝑀 (denoted by e. d.(𝑀)) measures the minimum total codimension
of effective zero divisors in this ring. More concretely, saying that e. d.(𝑀) = 𝑒 is to say that we cannot find two nonzero
effective cycles 𝑥𝑖 ∈ A

𝑖(𝑀), 𝑥𝑗 ∈ A
𝑗(𝑀)with zero intersection if 𝑖 + 𝑗 ≤ 𝑒, whereas two such cycles exist when the sum of

their codimensions is 𝑖 + 𝑗 = 𝑒 + 1 (see Definitions 2.1 and 2.2). This invariant was introduced in [13] as a refined version
of the good divisibility introduced by Pan in [15].
As we will see, the effective good divisibility of a variety𝑀 may help us to understand geometric properties of𝑀, such

as the (non)existence of nonconstant morphisms 𝜑 ∶ 𝑀 → 𝑀′ from𝑀 to certain rational homogeneous varieties𝑀′ (see
Section 5). Awell-known elementary result in this direction is the trivial fact thatmorphisms𝜑 ∶ ℙ𝑚 → ℙ𝑛 with𝑚 > 𝑛 are
constant. This can be thought of as a particular case of a result due to Tango (cf. [17]) that there are no nonconstant maps
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TABLE 1 Coxeter numbers of Dynkin diagram of classical type.

 𝐀𝒏 𝐁𝒏 𝐂𝒏 𝐃𝒏

h() n+1 2n 2n 2𝑛 − 2

from ℙ𝑚 to Grassmannians of linear subspaces of ℙ𝑛 if𝑚 > 𝑛. Recently, with the concept of effective good divisibility at
hand, this statement has been extended to maps between Grassmannians in [14].
In this paper, we will deal, more generally, with the effective good divisibility of rational homogeneous varieties of

classical type. In this case, the Chow ring is well-known, and the study of the e. d. relies on determining disjoint Schubert
cycles of maximal dimension; our study shows that e. d. for rational homogeneous varieties is related to the Coxeter
number of the Lie algebra of the corresponding group of automorphisms. Let us recall that, given a simple Lie algebra
with Dynkin diagram of classical type, the corresponding Coxeter number (see Definition 2.5) can be read out of Table 1.
Wemay state now themain results of this paper. First, we study the effective good divisibility of complete flagmanifolds

of classical type.

Theorem 1.1. The effective good divisibility of a complete flag manifold of classical type is h() − 1.

A priori this may suggest that the effective good divisibility of any complete flag manifold equals the Coxeter number
minus one. However, a computer computation with SageMath (see Appendix A.1) shows that this is the case for type G2,
while it is not for type F4 and E6, for which the effective good divisibility is 12, equal to the Coxeter number. The cases E7
and E8 are computationally out of reach with our method.
Furthermore, we study effective good divisibility of any rational homogeneous variety of classical type. It is not difficult

to show (see Corollary 2.18) that this number is lower bounded by the effective good divisibility of the corresponding
complete flag manifold. The following statement shows that the two invariants coincide in most of the cases and identify
the exceptions. Recall (see Section 2.2 for notation and details) that any choice of a subset 𝑅 of the set of nodes of defines
a parabolic subgroup and, consequently, a rational homogeneous variety, that we denote by(𝑅).

Theorem 1.2. The effective good divisibility of any rational homogeneous variety of classical type is equal to the effective
good divisibility of the corresponding complete flag manifold, with the following exception: in the case in which = D𝑛 and
𝑅 ∩ {1, 𝑛 − 1, 𝑛} = ∅, we have e. d.(D𝑛(𝑅)) = h(D𝑛) = 2𝑛 − 2.

We then study the question of existence of nonconstant maps to rational homogeneous varieties. The main idea is that,
using the homogeneity of the target, two effective zero divisors on𝑀′ can be pulled-back to𝑀 providing zero divisors in
the same codimensions; this imposes conditions relating e. d.(𝑀) and e. d.(𝑀′) for 𝜑 not to be constant.

Theorem 1.3. Let be a Dynkin diagram of classical type with set of nodes Δ, 𝑅 ⊂ Δ a nonempty subset. Let𝑀 be a smooth
complex projective variety such that e. d.(𝑀) > e. d.((𝑅)). Then, there are no nonconstant morphisms from𝑀 to(𝑅).

As a consequence, we obtain the following statement:

Corollary 1.4. Let ′ be a Dynkin diagram of classical type, whose set of nodes is Δ′ and  ⊊ ′ be a proper subdiagram,
with set of nodes Δ. Then, for any 𝑅 ⊂ Δ, 𝑅′ ⊂ Δ′, any morphism 𝜙 ∶ ′(𝑅′) → (𝑅) is constant.

Corollary 1.4 follows from Theorem 1.3; in fact, one can observe—using Theorems 1.1, 1.2—that in every possible case
e. d.(′(𝑅′)) > e. d.((𝑅)).
This result extends and encompasses the previously quoted results [14, 17]. In fact, the nonexistence of nonconstant

morphisms from a Grassmannian of linear subspaces of ℙ𝑚 to a Grassmannian of linear subspaces of ℙ𝑛 if𝑚 > 𝑛 follows
now by considering the case in which′ = A𝑚, and 𝑅′ is a singleton. Our result may be applied to a number of different
situations; for example, in the case in which ′ is of type B, C,D, it provides a similar statement also for orthogonal and
isotropic Grassmannians.
Finally, we note that our arguments make use of some computer computations of effective good divisibility and

maximal disjoint pairs for some rational homogeneous varieties with low-rank automorphism groups. We have
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176 MUÑOZ et al.

included the corresponding scripts (that we have done with the computer software SageMath) in the Appendix for the
reader’s convenience.
After this paper was posted on arXiv, we were informed by Hu et al. that they obtained similar results, using methods

of quantum cohomology. Studying Hasse diagrams they were able to compute the effective good divisibility also in the
exceptional cases. These results later appeared in the preprint [9].

2 PRELIMINARIES

2.1 Effective good divisibility

Let𝑀 be a smooth complex projective variety, with Chow ring A∙(𝑀). The following definition (introduced in [13, Defi-
nition 4.2] as an effective version of Pan’s good divisibility, cf. [15, Definition 4.1]) considers the existence of effective zero
divisors in this ring.

Definition 2.1. A variety𝑀 has effective good divisibility up to degree 𝑠 if, given effective cycles 𝑥𝑖 ∈ A
𝑖(𝑀), 𝑥𝑗 ∈ A

𝑗(𝑀)

with 𝑖 + 𝑗 = 𝑠 and 𝑥𝑖𝑥𝑗 = 0, we have 𝑥𝑖 = 0 or 𝑥𝑗 = 0.

The reason why this condition is called divisibility up to degree 𝑠 is the following. Consider two effective cycles 𝑥𝑖 ∈
A𝑖(𝑀), 𝑥𝑗 ∈ A

𝑗(𝑀)with 𝑖 + 𝑗 ≤ 𝑠 and 𝑥𝑖𝑥𝑗 = 0, and the class𝐻 of a very ample divisor. From the equality 𝑥𝑖𝑥𝑗𝐻𝑠−𝑖−𝑗 = 0,
the divisibility up to degree 𝑠 implies that 𝑥𝑖 = 0, or 𝑥𝑗𝐻𝑠−𝑖−𝑗 = 0, that is, 𝑥𝑗 = 0.
In particular, if𝑀 has effective good divisibility up to degree 𝑠, then it has it up to degree 𝑟 for every 𝑟 ≤ 𝑠 and we can

pose the following definition.

Definition 2.2. The effective good divisibility of𝑀, denoted by e. d.(𝑀), is themaximum integer 𝑠 such that𝑀 has effective
good divisibility up to degree 𝑠.

Definition 2.3. Apair (𝑥𝑖, 𝑥𝑗)with𝑥𝑖 ∈ A
𝑖(𝑀),𝑥𝑗 ∈ A

𝑗(𝑀)nonzero effective cycles such that𝑥𝑖𝑥𝑗 = 0, 𝑖 + 𝑗 = e. d.(𝑀) +
1 will be called amaximal disjoint pair (md-pair for short) in𝑀.

2.2 Notation: Weyl groups and homogeneous varieties

Throughout the paper, 𝐺 will denote a semisimple algebraic group, 𝐵 a Borel subgroup of 𝐺, and𝐻 a Cartan subgroup of 𝐵
(i.e., a maximal torus contained in 𝐵). The torus 𝐻 determines a root system Φ, whoseWeyl group𝑊 is isomorphic to the
quotient 𝑁(𝐻)∕𝐻 of the normalizer 𝑁(𝐻) of 𝐻 in 𝐺. Within Φ, 𝐵 determines a base of positive simple roots Δ = {𝛼𝑖, 𝑖 =
1, … , 𝑛}, whose associated reflections we denote by 𝑠𝑖 ∈ 𝑊. We denote by the Dynkin diagram of 𝐺, whose set of nodes
is Δ. We will assume that  is connected, which is equivalent to say that the Lie algebra of 𝐺 is simple. The nodes of the
Dynkin diagramwill be numbered as in the standard reference [11, p. 58] and we will identify each node 𝛼𝑖 ∈ Δwith the
corresponding index 𝑖. Given any nonempty set of indices 𝐼 ⊂ Δ, we will denote by𝐼 the (possibly disconnected) Dynkin
subdiagram of whose set of nodes is 𝐼; the numbering of the nodes in a subdiagram𝐼 of will be the same as in.
For every subset 𝐼 ⊂ Δ, we may consider the parabolic subgroup 𝑃𝐼 defined as 𝑃𝐼 ∶= 𝐵𝑊𝐼𝐵, where 𝑊𝐼 ⊂ 𝑊 is the

subgroup of𝑊 generated by the reflections 𝑠𝑖 , 𝑖 ∈ 𝐼. Taking the quotient by the subgroup 𝑃𝐼 we obtain the rational homo-
geneous variety 𝐺∕𝑃𝐼 (cf. [7, Section 23.3]), which we will denote by (Δ ⧵ 𝐼), and represent by the Dynkin diagram 

marked in the nodes Δ ⧵ 𝐼. An inclusion 𝐼 ⊂ 𝐽 ⊂ Δ provides a smooth contraction 𝐺∕𝑃𝐼 → 𝐺∕𝑃𝐽 . Note that the complete
flag manifold associated with 𝐺 can be written as

𝐺∕𝐵 = 𝐺∕𝑃∅ = (Δ),

and that it dominates any(Δ ⧵ 𝐼) via a smooth contraction.
In the cases of classical type (A𝑛, B𝑛, C𝑛, D𝑛), rational homogeneous varieties have well-known projective descrip-

tions (see Table 2 for some examples that we will consider in this paper): rational homogeneous varieties of types
 = A𝑛, B𝑛, C𝑛, D𝑛 can be described as varieties of flags of linear spaces in(1).
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MUÑOZ et al. 177

TABLE 2 Some rational homogeneous varieties of classical type.

𝐀𝒏(𝟏) ℙ𝒏

B𝑛(1) Smooth quadricℚ2𝑛−1

C𝑛(1) ℙ2𝑛−1

D𝑛(1) Smooth quadricℚ2𝑛−2

D𝑛(𝑛 − 1), D𝑛(𝑛) Spinor varieties (parameterizing ℙ𝑛−1’s in ℚ2𝑛−2)

It is well known that the reflections 𝑠𝑖 with respect to the positive simple roots𝛼𝑖 , 𝑖 = 1, … , 𝑛, generate theWeyl group𝑊.
Given an element𝑤 ∈ 𝑊, the smallest number 𝑘 for which there exists a sequence of indices 𝑖1, … , 𝑖𝑘 ∈ {1, … , 𝑛} such that

𝑤 = 𝑠𝑖1 , … , 𝑠𝑖𝑘

is called the length of𝑤, and denoted by 𝓁(𝑤). An expression of𝑤 as a product of 𝓁(𝑤) simple reflections is called reduced.
Let us recall that reduced expressions are not in general unique. It is also known that there exists a unique element
𝑤0 ∈ 𝑊 for which 𝓁 is maximal; it is called the longest element of𝑊. This element is also the maximum of𝑊, considered
as a poset with the Bruhat order, which can be defined as follows: two elements 𝜏, 𝑤 ∈ 𝑊 satisfy that 𝜏 ≤ 𝑤 if and only
if some substring of a reduced expression of 𝑤 is a reduced expression of 𝜏.

Notation 2.4. If 𝑤 = 𝑠𝑖1𝑠𝑖2 ⋯ 𝑠𝑖𝑚 is a reduced expression of 𝑤 ∈ 𝑊, for 0 ≤ 𝑘 < 𝑚 we will define

∙ 𝑤⌊𝑘⌋ ∶= 𝑠𝑖1𝑠𝑖2 … 𝑠𝑖𝑘 , which has length 𝑘;
∙ 𝑤⌈𝑘⌉ ∶= 𝑠𝑖𝑘+1 … 𝑠𝑖𝑚 , with length𝑚 − 𝑘;

so that we may write:

𝑤 = 𝑤⌊𝑘⌋𝑤⌈𝑘⌉, for every 𝑤 ∈ 𝑊.

Note that this decomposition depends on the choice of a reduced expression of 𝑤.

Let us also recall the following invariant of the group𝑊.

Definition 2.5. Let𝑊 be the Weyl group of a semisimple algebraic group 𝐺, with Dynkin diagram. Then, the Coxeter
number of𝑊, denoted by ℎ(), is the order of any element of the form:

𝑠𝜎(1) ⋯ 𝑠𝜎(𝑛), with 𝜎 a permutation of {1, … , 𝑛}.

The Coxeter number of 𝑊 can be defined in several equivalent ways that show its importance as an invariant of finite
Coxeter groups and Lie algebras (see [12, 3.16–3.20], and references therein).

Definition 2.6. Given a subset 𝐽 ⊂ Δ, let𝑊𝐽 be the following subgroup of𝑊:

𝑊𝐽 ∶= ⟨𝑠𝑖 | 𝑖 ∈ 𝐽⟩ ⊂ 𝑊.
This is a Weyl group, whose longest element we denote by 𝑤0𝐽 . Following [12, Section 5.12], we define

𝑊𝐽 ∶= {𝑤 ∈ 𝑊 | 𝓁(𝑤𝑠𝑖) > 𝓁(𝑤) for all 𝑖 ∈ 𝐽}.
Any element of𝑊 can be decomposed uniquely as a product of an element of𝑊𝐽 and an element of𝑊𝐽 :

Lemma 2.7 [12, Section 5.12].Given 𝑣 ∈ 𝑊 there exist unique 𝑣𝐽 ∈ 𝑊𝐽 and 𝑣𝐽 ∈ 𝑊𝐽 such that 𝑣 = 𝑣𝐽𝑣𝐽 and 𝓁(𝑣) = 𝓁(𝑣𝐽) +
𝓁(𝑣𝐽). Moreover, 𝑣𝐽 is the unique element of the smallest length in the left coset 𝑣𝑊𝐽 .
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178 MUÑOZ et al.

In general, the subset 𝑊𝐽 ⊂ 𝑊 is not a subgroup. By [2, Corollary 2.5.3], it has a unique element of maximal length,
that we denote by 𝑤𝐽

0
. Furthermore, we may observe the following:

Remark 2.8. In the case of the longest element 𝑤0, the decomposition given in Lemma 2.7 has the following properties
(see [2, formula (2.16)]):

(𝑤0)
𝐽 = 𝑤𝐽

0
(𝑤0)𝐽 = 𝑤0𝐽.

2.3 Schubert varieties

Let us recall that for any algebraic variety𝑀 we have a map between the Chow ring and the cohomology ring:

A∙(𝑀)⟶ H∙(𝑀,ℤ), (1)

which is a homomorphismof graded ringswhich doubles the degree (cf. [6, Corollary 19.2]). If𝑀 is a rational homogeneous
variety, the Bruhat decomposition of the corresponding semisimple group defines a cellular decomposition of 𝑀, and
the above map is an isomorphism (see [6, Example 19.1.11]). Furthermore, the classes of the closures of the cells—called
Schubert varieties—constitute a basis of the free abelian groupA∙(𝑀).Wewill describe nowSchubert varieties, considering
separately the case𝑀 = 𝐺∕𝐵 and the case𝑀 = 𝐺∕𝑃𝐽 , 𝐽 ≠ ∅.

2.3.1 Schubert varieties in complete flag manifolds

Definition 2.9. Given 𝑤 ∈ 𝑊 we define the Schubert variety 𝑋𝑤 as the closure of the 𝐵-orbit 𝐵𝑤𝐵∕𝐵 associated with 𝑤.
For instance, 𝑋𝑤0 = 𝐺∕𝐵. It is known that the dimension of 𝑋𝑤 is equal to 𝓁(𝑤), and its codimension in 𝐺∕𝐵 is then:

𝑐(𝑤) ∶= codim(𝑋𝑤, 𝐺∕𝐵) = 𝓁(𝑤0) − 𝓁(𝑤).

The classes of Schubert varieties in A∙(𝐺∕𝐵) are called Schubert cycles in 𝐺∕𝐵.

Remark 2.10. In order to identify every Schubert variety as a union of cells, we note that the cellular decomposition is
obtained by projecting to 𝐺∕𝐵 the Bruhat decomposition of 𝐺 ([10, Section 28.3]),

𝐺 =
⨆
𝑤∈𝑊

𝐵𝑤𝐵.

Since we have that 𝐵𝑤𝐵 =
⨆
𝜏≤𝑤

𝐵𝜏𝐵, then we get that 𝑋𝑤 =
⨆
𝜏≤𝑤

𝐵𝜏𝐵∕𝐵.

Definition 2.11. Denoting by 𝐵− ∶= 𝑤0𝐵𝑤0 the opposite Borel subgroup of 𝐵, the closure of 𝐵−𝑤𝐵∕𝐵 ⊂ 𝐺∕𝐵 is called
the opposite Schubert variety 𝑋𝑤.

Remark 2.12. The relation between Schubert varieties and opposite Schubert varieties is the following. For every𝑤 ∈ 𝑊:

𝑋𝑤 = 𝑤0𝑋𝑤0𝑤. (2)

The variety 𝑋𝑤 has dimension 𝑐(𝑤) and codimension 𝓁(𝑤). In particular, we have the following equality of classes in
A∙(𝐺∕𝐵):

[𝑋𝑣] = [𝑋𝑤0𝑣] ∈ A
𝓁(𝑣)(𝐺∕𝐵) and [𝑋𝑣] = [𝑋

𝑤0𝑣] ∈ A𝑐(𝑣)(𝐺∕𝐵). (3)

Let us recall some known facts that will allow us to write e. d.(𝐺∕𝐵) in terms of products of Schubert cycles and
intersections of Schubert varieties:
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MUÑOZ et al. 179

Proposition 2.13. Consider the complete flag manifold 𝐺∕𝐵:

(1) The Schubert cycles form a ℤ-basis of A∙(𝐺∕𝐵).
(2) The cones of effective classes in A𝑐(𝐺∕𝐵) ⊗ℤ ℚ are polyhedral cones generated by the Schubert cycles of codimension 𝑐,

for every 𝑐 ≥ 0.
(3) The product of two Schubert cycles can be written as an integral combination of Schubert cycles:

[𝑋𝑢] ⋅ [𝑋𝑣] =
∑
𝑤∈𝑊

𝑐(𝑢)+𝑐(𝑣)=𝑐(𝑤)

𝑐𝑤𝑢𝑣[𝑋𝑤]

with nonnegative coefficients 𝑐𝑤𝑢𝑣 .
(4) Given 𝑢, 𝑣 ∈ 𝑊, the varieties 𝑋𝑢, 𝑋𝑣 meet properly—that is, every component of their intersection has the expected

codimension 𝓁(𝑣) + 𝑐(𝑢)—if and only if 𝑣 ≤ 𝑢. In particular, if 𝓁(𝑣) + 𝑐(𝑢) ≤ dim𝐺∕𝐵 then

[𝑋𝑢] ⋅ [𝑋
𝑣] ≠ 0⟺ 𝑣 ≤ 𝑢.

Proof. Applying [8, Theorem 1] to the unipotent part of 𝐵 we get (1) and (2). For (3) and (4), see [4, Propositions 1.3.6 and
1.3.2]. □

We can thus re-write the effective good divisibility of the complete flag manifold 𝐺∕𝐵 as a property of the group𝑊.

Lemma 2.14. The variety𝐺∕𝐵 has effective good divisibility up to degree 𝑠 if and only if for every two elements 𝑢, 𝑣 ∈ 𝑊 such
that 𝓁(𝑣) + 𝑐(𝑢) = 𝑠 we have 𝑣 ≤ 𝑢.

Proof. The statement follows straightforwardly from Proposition 2.13. Let us write 𝑥𝑖 and 𝑥𝑗 as positive integral linear
combinations of Schubert cycles using (1) and (2). Then, by (3) 𝑥𝑖𝑥𝑗 is a sum of nonnegative multiples of Schubert cycles.
We conclude by (4). □

2.3.2 Schubert varieties in rational homogeneous varieties

The Bruhat decomposition also defines a cellular decomposition of any rational homogeneous variety of the form 𝐺∕𝑃𝐽 ,
with 𝐽 ⊂ Δ, as follows.

Definition 2.15. For any 𝑤 ∈ 𝑊𝐽 we define the Schubert variety 𝑋𝑤 ⊂ 𝐺∕𝑃𝐽 as the closure of 𝐶𝑤 ∶= 𝐵𝑤𝑃𝐽∕𝑃𝐽 ⊂ 𝐺∕𝑃𝐽 ,
and the opposite Schubert variety 𝑋𝑤 ⊂ 𝐺∕𝑃𝐽 as the closure of 𝐶𝑤 ∶= 𝐵−𝑤𝑃𝐽∕𝑃𝐽 ⊂ 𝐺∕𝑃𝐽 ; their dimensions are, respec-
tively, 𝓁(𝑤) and dim(𝐺∕𝑃𝐽) − 𝓁(𝑤). As in the case of𝐺∕𝐵, the classes of Schubert varieties inA

∙(𝐺∕𝑃𝐽) are called Schubert
cycles.

Remark 2.16. In particular, we have 𝑋𝑤 = 𝑤0𝑋(𝑤0𝑤)𝐽 , for every 𝑤 ∈ 𝑊𝐽 . Therefore, we may write:

[𝑋𝑤] = [𝑋(𝑤0𝑤)𝐽 ], and [𝑋𝑤] = [𝑋
(𝑤0𝑤)

𝐽
]. (4)

Remark 2.17. We have used the same notation for Schubert varieties in 𝐺∕𝐵 and 𝐺∕𝑃𝐽 . Let us discuss the relation among
them, by means of the natural projection 𝜋 ∶ 𝐺∕𝐵 → 𝐺∕𝑃𝐽 . Note first that an element in 𝐺∕𝐵 can be written in the form
𝑏𝑤𝐵 for a unique𝑤 ∈ 𝑊, and some 𝑏 ∈ 𝐵. By Lemma2.7,𝑤 can be decomposeduniquely in the form𝑤𝐽𝑤𝐽 , with𝑤𝐽 ∈ 𝑊𝐽 ,
𝑤𝐽 ∈ 𝑊𝐽 ; then [10, Corollary 28.3] implies that the image of 𝑏𝑤𝐵 into 𝐺∕𝑃𝐽 is equal to 𝑏𝑤𝐽𝑃𝐽 , and, in particular:

𝜋(𝑋𝑤) = 𝑋𝑤𝐽 .
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180 MUÑOZ et al.

Moreover, the pullback map:

𝜋∗ ∶ A∙(𝐺∕𝑃𝐽)⟶ A∙(𝐺∕𝐵),

is a monomorphism of rings; in fact, since these two rings can be identified with the corresponding cohomology rings,
see (1), the injectivity of the map follows from [1, Corollary 5.4]. More concretely, for every 𝑤 ∈ 𝑊𝐽 , the inverse image of
𝑋𝑤 ⊂ 𝐺∕𝑃𝐽 is

𝜋−1(𝑋𝑤) =
⨆

𝜏∈𝑊𝐽, 𝜏≤𝑤
𝜎≤𝑤0𝐽

𝐵𝜏𝜎𝐵 = 𝑋𝑤𝑤0𝐽 . (5)

Note that 𝓁(𝑤𝑤0𝐽) = 𝓁(𝑤) + 𝓁(𝑤0𝐽) by Lemma 2.7.
Moreover, using that𝑤0𝑤𝑤0𝐽 ∈ 𝑊𝐽 for every𝑤 ∈ 𝑊𝐽 (see [2, Proposition 2.5.4]), we may write the following equalities

of subvarieties of 𝐺∕𝑃𝐽 :

𝑋𝑣 = 𝑤0𝑋(𝑤0𝑣)𝐽 = 𝑤0𝑋(𝑤0𝑣𝑤0𝐽)𝐽 = 𝑤0𝑋𝑤0𝑣𝑤0𝐽 , (6)

hence, for 𝑣 ∈ 𝑊𝐽 , we get that the pullback of 𝑋𝑣 ⊂ 𝐺∕𝑃𝐽 is 𝑋𝑣 ⊂ 𝐺∕𝐵:

𝜋−1(𝑋𝑣) = 𝑤0𝜋
−1(𝑋𝑤0𝑣𝑤0𝐽 ) = 𝑤0(𝑋𝑤0𝑣𝑤0𝐽𝑤0𝐽 ) = 𝑤0𝑋𝑤0𝑣 = 𝑋

𝑣. (7)

In particular, codim(𝑋𝑣, 𝐺∕𝑃𝐽) = codim(𝑋𝑣, 𝐺∕𝐵) = 𝓁(𝑣).

Since, given 𝐼 ⊂ 𝐽 ⊂ Δ the monomorphism 𝜋∗ ∶ A∙(𝐺∕𝑃𝐽)⟶ A∙(𝐺∕𝑃𝐼), induced by the natural projection 𝐺∕𝑃𝐼 →
𝐺∕𝑃𝐽 , preserves effectivity we may conclude the following.

Corollary 2.18. If 𝐼 ⊂ 𝐽 ⊂ Δ, then e. d.(𝐺∕𝑃𝐼) ≤ e. d.(𝐺∕𝑃𝐽). In particular, e. d.(𝐺∕𝐵) ≤ e. d.(𝐺∕𝑃𝐽) for every 𝐽 ⊂ Δ.

Finally, as in the case of 𝐺∕𝐵, the properties of intersection of Schubert and opposite Schubert varieties provide enough
information to understand the products of effective cycles, and can be translated in terms of the Bruhat ordering.

Notation 2.19. For any 𝑢 ∈ 𝑊, we define

𝑐𝐽(𝑢) ∶= 𝓁(𝑤𝐽
0
) − 𝓁(𝑢𝐽), 𝑐𝐽(𝑢) ∶= 𝓁(𝑤0𝐽) − 𝓁(𝑢𝐽).

The integer 𝑐𝐽(𝑢) = 𝑐𝐽(𝑢𝐽) is the codimension of the Schubert variety 𝑋𝑢𝐽 ⊂ 𝐺∕𝑃𝐽 , while 𝑐𝐽(𝑢) = 𝑐𝐽(𝑢𝐽) is the
codimension of the Schubert variety 𝑋𝑢𝐽 in 𝑃𝐽∕𝐵. As a consequence of Lemma 2.7 and Remark 2.8, we have

𝑐(𝑢) = 𝑐𝐽(𝑢) + 𝑐𝐽(𝑢). (8)

The following statement is an extension of Proposition 2.13 to any rational homogeneous variety:

Proposition 2.20. Consider the rational homogeneous variety 𝐺∕𝑃𝐽 :

(1) The Schubert cycles form a ℤ-basis of A∙(𝐺∕𝑃𝐽).
(2) The cones of effective classes in A𝑐(𝐺∕𝑃𝐽) ⊗ℤ ℚ are polyhedral cones generated by the Schubert cycles of codimension 𝑐,

for every 𝑐 ≥ 0.
(3) The product of two Schubert cycles 𝑋𝑢, 𝑋𝑣 , 𝑢, 𝑣 ∈ 𝑊𝐽 , can be written as an integral combination of Schubert cycles:

[𝑋𝑢] ⋅ [𝑋𝑣] =
∑
𝑤∈𝑊𝐽

𝑐𝐽(𝑢)+𝑐𝐽(𝑣)=𝑐𝐽(𝑤)

𝑐𝑤𝑢𝑣[𝑋𝑤]
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MUÑOZ et al. 181

with nonnegative coefficients 𝑐𝑤𝑢𝑣 .
(4) Given 𝑢, 𝑣 ∈ 𝑊𝐽 , the varieties 𝑋𝑢, 𝑋𝑣 meet properly—that is, every component of their intersection has the expected

codimension 𝓁(𝑣) + 𝑐𝐽(𝑢)—if and only if 𝑣 ≤ 𝑢. In particular, if 𝓁(𝑣) + 𝑐𝐽(𝑢) ≤ dim𝐺∕𝑃𝐽 then

[𝑋𝑢] ⋅ [𝑋
𝑣] ≠ 0⟺ 𝑣 ≤ 𝑢.

Proof. As in the case of complete flags, (1) follows from [1], and (2), (3) from [8]. For the last part, we will use part (4) of
Proposition 2.13.
Let 𝜋 ∶ 𝐺∕𝐵 → 𝐺∕𝑃𝐽 be the natural projection. Note first that, by Remark 2.17, 𝜋−1(𝑋𝑢) = 𝑋𝑢𝑤0𝐽 . On the other hand,

by formula (6),

𝑋𝑣 = 𝑤0𝑋𝑤0𝑣𝑤0𝐽 = 𝑤0𝜋(𝑋𝑤0𝑣𝑤0𝐽 ).

Then, by Remark 2.17, 𝑋𝑢 ∩ 𝑋𝑣 ≠ ∅ if and only if 𝑋𝑢𝑤0𝐽 ∩ 𝑤0𝑋𝑤0𝑣𝑤0𝐽 = 𝑋𝑢𝑤0𝐽 ∩ 𝑤0𝑋
𝑣𝑤0𝐽 ≠ ∅ in 𝐺∕𝐵, which (by

Proposition 2.13) is equivalent to 𝑣𝑤0𝐽 ≤ 𝑢𝑤0𝐽 . We conclude the proof by noting that this is equivalent to 𝑣 ≤ 𝑢.
Note first that, if 𝑤 ∈ 𝑊𝐽 then, adding to a reduced expression of 𝑤 a reduced expression of 𝑤0𝐽 , we obtain, by

Lemma 2.7, a reduced expression of 𝑤𝑤0𝐽 .
Assume first that 𝑣 ≤ 𝑣𝑤0𝐽 ≤ 𝑢𝑤0𝐽 . The fact that 𝑣 ≤ 𝑢𝑤0𝐽 implies that the reduced expression of 𝑢𝑤0𝐽 contains a

reduced expression of 𝑣. But the last element of a reduced expression of 𝑣 cannot be of the form 𝑠𝑗, 𝑗 ∈ 𝐽 by the defi-
nition of 𝑊𝐽 ; then it is part of the reduced expression of 𝑢. This implies that 𝑣 ≤ 𝑢. Conversely, if 𝑣 ≤ 𝑢, then clearly
𝑣𝑤0𝐽 ≤ 𝑢𝑤0𝐽 . □

While the coefficients 𝑐𝑤𝑢𝑣 appearing in Proposition 2.20 (3) do not depend only on𝑊𝐽 , Proposition 2.20 (4) implies that
the nonvanishing of the product [𝑋𝑢] ⋅ [𝑋𝑣] is determined by the Bruhat order on𝑊𝐽 ; in particular, e. d.(𝐺∕𝑃𝐽) depends
only on the poset𝑊𝐽 :

Lemma 2.21. The variety 𝐺∕𝑃𝐽 has effective good divisibility up to degree 𝑠 if and only if for every two elements 𝑢, 𝑣 ∈ 𝑊𝐽

such that 𝓁(𝑣) + 𝑐𝐽(𝑢) = 𝑠 we have 𝑣 ≤ 𝑢.

In particular, note that, with the standard numbering of the nodes of their Dynkin diagrams, the map sending each
reflection 𝑠𝑖 of B𝑛 to the reflection 𝑠𝑖 of C𝑛 provides a group isomorphism between the corresponding Weyl groups
preserving the Bruhat order. Hence, we get the following:

Corollary 2.22. For every 𝐼 ⊂ Δ, we have:

e. d.(B𝑛(𝐼)) = e. d.(C𝑛(𝐼)).

Remark 2.23. The equality in Proposition 2.20 (3) is known as the Littlewood–Richardson rule, since it is a generalization of
the classical formula of the decomposition of the product of two Schur functions. Given an md-pair in a rational homoge-
neous variety, the nonnegativity of the coefficients in that rule (which essentially follows from item (2) in the proposition)
allows us to find an md-pair consisting of two Schubert cycles. Then, by [5, Theorem 1.7], we may claim that these two
Schubert cycles are represented by two disjoint subvarieties.

3 EFFECTIVE GOOD DIVISIBILITY OF FLAGMANIFOLDS

This section is devoted to the proof of Theorem 1.1 which, in view of Corollary 2.22, is reduced to the cases = A𝑛, B𝑛, or
D𝑛. In Section 3.1, we will show that the effective good divisibility of a complete flag manifold of classical type is smaller
than or equal to h() − 1. In fact, we will provide examples of rational homogeneous varieties of Picard number one for
which the effective good divisibility is smaller than or equal to h() − 1; the bound will then follow from Corollary 2.18.
In Section 3.2, we will conclude the proof of the theorem by showing that the provided bound is the exact value of the
effective good divisibility in each case.
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182 MUÑOZ et al.

TABLE 3 Bounds on e. d.((𝑟)).

(r) 𝐞. 𝐝.((r))
A𝑛(r) = n
B𝑛(r)/C𝑛(r) ≤ 2𝑛 − 1

D𝑛(r) ≤ 2𝑛 − 3 𝑟 = 1, 𝑛 − 1, 𝑛

D𝑛(r) ≤ 2𝑛 − 2 𝑟 ≠ 1, 𝑛 − 1, 𝑛

3.1 Upper bounds

The fact that e. d.(A𝑛(𝑟)) = 𝑛 (= h(A𝑛) − 1) for every 𝑟 has been proven in [14].
In the following examples, we will use some projective geometry arguments to compute upper bounds in the cases of

rational homogeneous varieties of Picard number one of types B𝑛 and D𝑛.

Example 3.1. 𝐁𝒏(𝒓): Grassmannian of (𝑟 − 1)-dimensional linear spaces contained in the (2𝑛 − 1)-dimensional quadric
B𝑛(1). We consider the subvariety Σ𝑝 ⊂ B𝑛(𝑟), parameterizing (𝑟 − 1)-dimensional linear spaces contained in B𝑛(1) and
passing through a point 𝑝 in the quadric B𝑛(1), and the closed subset Σ𝐻 ⊂ B𝑛(𝑟), parameterizing linear spaces contained
in a smooth hyperplane section𝐻 of B𝑛(1) not containing 𝑝. Clearly, [Σ𝑝] ⋅ [Σ𝐻] = 0. Note that Σ𝑝 is a Schubert variety in
B𝑛(𝑟), while Σ𝐻 is not (however [Σ𝐻] is a Schubert cycle).
The variety Σ𝑝 is isomorphic to B𝑛−1(𝑟 − 1), and Σ𝐻 parameterizes (𝑟 − 1)-dimensional linear spaces in a (2𝑛 − 2)-

dimensional smooth quadric (in particular it is nonempty, but not necessarily irreducible). Then, the sum of the
codimensions of Σ𝑝 and Σ𝐻 is

2 dimB𝑛(𝑟) − (dimΣ𝑝 + dimΣ𝐻) = 𝑟(4𝑛 + 1 − 3𝑟) −
(𝑟 − 1)(4𝑛 − 3𝑟)

2
−
𝑟(4𝑛 − 1 − 3𝑟)

2
= 2𝑛.

We have thus shown that e. d.(B𝑛(𝑟)) ≤ 2𝑛 − 1 for every 𝑟, 𝑛. □

Example 3.2. 𝐃𝒏(𝒓), 𝒓 ∈ {𝟐, … , 𝒏 − 𝟐}: Grassmannian of (𝑟 − 1)-dimensional linear spaces contained in the (2𝑛 − 2)-
dimensional quadric D𝑛(1). The same argument as in Example 3.1 provides here the inequality e. d.(D𝑛(𝑟)) ≤ 2𝑛 − 2 for
every 𝑟 ≤ 𝑛 − 2, 𝑛 ≥ 4.

Example 3.3. 𝐃𝒏(𝒓), 𝒓 ∈ {𝟏, 𝒏 − 𝟏, 𝒏}: the (2𝑛 − 2)-dimensional quadricD𝑛(1) or a Grassmannian of (𝑛 − 1)-dimensional
linear spaces contained in D𝑛(1), classically known as a spinor variety.
We start with the case 𝑟 = 1 observing that the (2𝑛 − 2)-dimensional quadric D𝑛(1) contains two disjoint linear sub-

spaces of dimension 𝑛 − 1, therefore we get e. d.(D𝑛(1)) ≤ 2𝑛 − 3. Note that these two linear subspaces belong to the same
class in A∙(D𝑛(1)) if 𝑛 is even, and to different classes if 𝑛 is odd (cf. Remark 4.4).
For the remaining cases, we note first that D𝑛(𝑛 − 1) ≃ D𝑛(𝑛), so we may assume 𝑟 = 𝑛. Given two general points in

D𝑛(1), there is no positive dimensional linear space contained in D𝑛(1) passing through them. Hence, if we denote by Σ𝑝
the subvariety ofD𝑛(𝑛) parameterizing (𝑛 − 1)-dimensional linear spaces contained inD𝑛(1) and passing through a point
𝑝, we have [Σ𝑝] ⋅ [Σ𝑝] = 0. The variety Σ𝑝 is isomorphic to D𝑛−1(𝑛 − 1), so it has codimension

dimD𝑛(𝑛) − dimD𝑛−1(𝑛 − 1) =
𝑛(𝑛 − 1)

2
−
(𝑛 − 1)(𝑛 − 2)

2
= 𝑛 − 1.

This shows that e. d.(D𝑛(𝑛 − 1)) = e. d.(D𝑛(𝑛)) ≤ 2𝑛 − 3. □

We summarize in Table 3 the bounds obtained in Examples 3.1–3.3.
Together with Corollary 2.18 and Table 1, this provides the following:

Corollary 3.4. Let 𝐺∕𝐵 be a complete flag manifold of classical type. Then, e. d.(𝐺∕𝐵) ≤ h() − 1.
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MUÑOZ et al. 183

TABLE 4 Reduced expressions of 𝑤𝐽0 .

 𝒘𝑱
𝟎

A𝑛 𝑠𝑛𝑠𝑛−1 … 𝑠2𝑠1

B𝑛/C𝑛 𝑠1𝑠2 … 𝑠𝑛−1𝑠𝑛𝑠𝑛−1 … 𝑠2𝑠1

D𝑛 𝑠1𝑠2 … 𝑠𝑛−2𝑠𝑛𝑠𝑛−1 … 𝑠2𝑠1 = 𝑠1𝑠2 … 𝑠𝑛−2𝑠𝑛−1𝑠𝑛 … 𝑠2𝑠1

3.2 Proof of Theorem 1.1

To show that e. d.(𝐺∕𝐵) ≥ h() − 1 we will use an inductive argument. We set 𝐽 ∶= Δ ⧵ {1}, and denote by 𝐽 the sub-
diagram of  supported on the nodes indexed by 𝐽. A fundamental ingredient in the proof will be a description of some
reduced expressions for the elements of maximal length in𝑊𝐽 provided by Stumbo in [16], that we recall here.

Example 3.5. We consider the case of rational homogeneous varieties (1), where  = A𝑛, B𝑛, C𝑛, D𝑛 is a Dynkin
diagram of classical type, and set 𝐽 ∶= Δ ⧵ {1}. In [16, Theorems 2,4 and 6] (note that in [16] the nodes are numbered
differently) it has been shown that the maximal elements 𝑤𝐽

0
∈ 𝑊𝐽 have the reduced expressions listed in Table 4.

Moreover, Stumbo showed that every element in𝑊𝐽 has a reduced expression which is a right substring of the above
reduced expressions of 𝑤𝐽

0
. Note that, in the D𝑛 case, the fact that 𝑠𝑛−1𝑠𝑛 = 𝑠𝑛𝑠𝑛−1, implies that, for𝑚 ≠ 𝑛 − 1:

(𝑠1𝑠2 … 𝑠𝑛−2𝑠𝑛𝑠𝑛−1 … 𝑠2𝑠1)⌈𝑚⌉ = (𝑠1𝑠2 … 𝑠𝑛−2𝑠𝑛−1𝑠𝑛 … 𝑠2𝑠1)⌈𝑚⌉.
Then, we may describe some generators of A∙((1)) as follows:

A𝑚((1)) = ℤ[𝑋𝑤𝐽
0
⌈𝑚⌉] for = A𝑛, B𝑛, C𝑛,

A𝑚(D𝑛(1)) =

{
ℤ[𝑋𝑤𝐽

0
⌈𝑚⌉] for𝑚 ≠ 𝑛 − 1,

ℤ([𝑋𝑤𝛼], [𝑋𝑤𝛽 ]) for𝑚 = 𝑛 − 1,

where

𝑤𝛼 ∶= 𝑠𝑛−1𝑠𝑛−2 … 𝑠2𝑠1, 𝑤𝛽 ∶= 𝑠𝑛𝑠𝑛−2 … 𝑠2𝑠1.

The following statement is a straightforward consequence of Example 3.5.

Lemma 3.6. The following statements hold:

(0) 𝓁(𝑤𝐽
0
) is equal to h() − 1 if ≠ D𝑛, and to h() if = D𝑛;

(1) if 𝑣 ∈ 𝑊 has length one, then 𝑣 ≤ 𝑤𝐽
0
;

(2) in cases B𝑛 ∕D𝑛, if 𝑣 ∈ 𝑊 has length two, then
(a) 𝑣 ≤ 𝑤𝐽

0
, and

(b) 𝑣 ≤ 𝑤𝐽
0
⌈1⌉, unless 𝑣 = 𝑠1𝑠2;

(3) if 𝑣𝐽, 𝑢𝐽 ∈ 𝑊𝐽 with 𝓁(𝑣𝐽) ≤ 𝓁(𝑢𝐽), then 𝑣𝐽 ≤ 𝑢𝐽 except in case D𝑛 when {𝑣𝐽, 𝑢𝐽} = {𝑤𝛼, 𝑤𝛽}.

Proof. Using the results quoted in Example 3.5, the proof goes through a case-by-case analysis of the right substrings of
the elements𝑤𝐽

0
. We just note that, in cases B𝑛 ∕D𝑛,𝑤𝐽0⌈1⌉ obviously contains every possible reduced expression of length

two of the form 𝑠𝑖𝑠𝑗 with 𝑖 > 1; since 𝑠1𝑠𝑖 = 𝑠𝑖𝑠1 for 𝑖 > 2, then the result follows. □

Corollary 3.7. If 𝑣, 𝑢 ∈ 𝑊 satisfy that 𝓁(𝑣) + 𝑐(𝑢) = h() − 1, then 𝑣𝐽 ≤ 𝑢𝐽 .

Proof. Using formula (8), the assumption 𝓁(𝑣) + 𝑐(𝑢) = h() − 1 and item (0) in Lemma 3.6, we can write:

𝓁(𝑣𝐽) ≤ 𝓁(𝑣) = 𝓁(𝑤𝐽
0
) − 𝑐(𝑢) ≤ 𝓁(𝑤𝐽

0
) − 𝑐𝐽(𝑢) = 𝓁(𝑢𝐽)  ≠ D𝑛
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184 MUÑOZ et al.

𝓁(𝑣𝐽) ≤ 𝓁(𝑣) = 𝓁(𝑤𝐽
0
) − 𝑐(𝑢) − 1 ≤ 𝓁(𝑤𝐽

0
) − 𝑐𝐽(𝑢) − 1 = 𝓁(𝑢𝐽) − 1  = D𝑛

so the result follows from Lemma 3.6 (3). □

Theorem 3.8. A complete flag manifold of classical type has effective good divisibility up to degree h() − 1.

Proof. As pointed out in Lemma 2.14, we need to prove that 𝑣 ≤ 𝑢 for every two elements 𝑢, 𝑣 ∈ 𝑊 such that 𝓁(𝑣) + 𝑐(𝑢) =
ℎ() − 1.
We will prove the statement by induction on the number of nodes of , starting from the cases A1, B2, and D4. For A1

the statement is clear, and for B2 and D4 it can be easily checked by listing all the possible words (see Appendix A.1). Set

𝑚 ∶= h() − h(𝐽) =

{
1 if = A𝑛,

2 if ≠ A𝑛 .

Case 1. Assume 𝑣 = 𝑣𝐽 .
If 𝓁(𝑣𝐽) + 𝑐𝐽(𝑢) ≤ h(𝐽) − 1, then we use induction to get 𝑣 = 𝑣𝐽 ≤ 𝑢𝐽 ≤ 𝑢.
If 𝓁(𝑣𝐽) + 𝑐𝐽(𝑢) > h(𝐽) − 1, then we have

h() − 1 = 𝓁(𝑣𝐽) + 𝑐𝐽(𝑢) + 𝑐
𝐽(𝑢) > h(𝐽) − 1 + 𝑐

𝐽(𝑢),

and in particular 𝑐𝐽(𝑢) ≤ 𝑚 − 1 ≤ 1. Since 𝑢𝐽 = 𝑤𝐽
0
⌈𝑐𝐽(𝑢)⌉, and 𝑠1 ≰ 𝑣, by Lemma 3.6 (1) and (2), we get 𝑣⌊𝑚⌋ ≤ 𝑢𝐽 .

On the other hand, by induction, since

𝓁(𝑣⌈𝑚⌉) + 𝑐𝐽(𝑢) ≤ 𝓁(𝑣) − 𝑚 + 𝑐(𝑢) = h() − 1 − 𝑚 = h(𝐽) − 1,

we get 𝑣⌈𝑚⌉ ≤ 𝑢𝐽 , and we can conclude that 𝑣 = 𝑣⌊𝑚⌋𝑣⌈𝑚⌉ ≤ 𝑢𝐽𝑢𝐽 = 𝑢.
Case 2. Assume 𝑣 ≠ 𝑣𝐽 ; in particular 𝓁(𝑣𝐽) ≤ 𝓁(𝑣) − 1.
If 𝓁(𝑣𝐽) + 𝑐𝐽(𝑢) ≤ h(𝐽) − 1, then we conclude that 𝑣𝐽 ≤ 𝑢𝐽 by induction. By Corollary 3.7 in all these cases, we have

also 𝑣𝐽 ≤ 𝑢𝐽 , therefore 𝑣 ≤ 𝑢.
If the above inequality is not satisfied, then 𝑚 = 2, 𝓁(𝑣𝐽) = 𝓁(𝑣) − 1 and 𝑐𝐽(𝑢) = 𝑐(𝑢), that is,  ≠ A𝑛, 𝑣𝐽 = 𝑠1, and

𝑢𝐽 = 𝑤𝐽
0
. Since

𝓁(𝑣𝐽⌈1⌉) + 𝑐𝐽(𝑢) ≤ 𝓁(𝑣) − 2 + 𝑐(𝑢) = h(𝐽) − 1,

we can apply induction to get 𝑣𝐽⌈1⌉ ≤ 𝑢𝐽 .
On the other hand, by Lemma 3.6 (2) 𝑣𝐽𝑣𝐽⌊1⌋ ≤ 𝑢𝐽 = 𝑤𝐽0. We can thus conclude that 𝑣 = 𝑣𝐽𝑣𝐽⌊1⌋𝑣𝐽⌈1⌉ ≤ 𝑢𝐽𝑢𝐽 = 𝑢. □

4 PROOF OF THEOREM 1.2

In this section, we will compute the effective good divisibility of rational homogeneous varieties of the classical type and
Picard number one.We start by observing that for varieties of typeA𝑛, B𝑛, C𝑛 and for some varieties of typeD𝑛 this follows
from Theorem 1.1.

Corollary 4.1. Let (𝑅) be a rational homogeneous variety, with either  = A𝑛, B𝑛, C𝑛, 𝑅 ⊂ {1, … , 𝑛}, or  = D𝑛 and 𝑅 ∩
{1, 𝑛 − 1, 𝑛} ≠ ∅. Then,

e. d.((𝑅)) = h() − 1.
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MUÑOZ et al. 185

Proof. As a consequence of the examples presented in Section 3.1, we get that e. d.((𝑟)) ≤ h() − 1 (see Table 3), for
some 𝑟 ∈ 𝑅. On the other hand, by Corollary 2.18, and Theorem 1.1, in every case

h() − 1 = e. d.(𝐺∕𝐵) ≤ e. d.((𝑅)) ≤ e. d.((𝑟)) ≤ h() − 1.

This concludes the proof. □

The rest of the section will be devoted to the computation of e. d.(D𝑛(𝑅)), when 𝑅 ∩ {1, 𝑛 − 1, 𝑛} = ∅. The proof will be
completed in Section 4.2. A fundamental ingredient of the proof will be the fact that the only md-pairs of Schubert cycles
in D𝑛(1), D𝑛(𝑛 − 1), and D𝑛(𝑛) are those described in Example 3.3, namely the classes of two disjoint linear subspaces
of dimension 𝑛 − 1 in D𝑛(1), and the class of the subset of D𝑛(𝑟) (𝑟 = 𝑛 − 1, 𝑛) parameterizing linear subspaces passing
through a point of D𝑛(1) (which has zero self-intersection). We start by proving this in the following section.

4.1 Maximal disjoint pairs in quadrics and spinor varieties

Let Δ be the set of nodes of the diagram = D𝑛. Along this section, we will use the following notation:

𝐽 ∶= Δ ⧵ {1}, 𝐼 ∶= Δ ⧵ {𝑛}, 𝐾 ∶= 𝐼 ∩ 𝐽.

We also recall from Example 3.5 the elements

𝑤𝛼 ∶= 𝑠𝑛−1𝑠𝑛−2 ⋯ 𝑠2𝑠1, 𝑤𝛽 ∶= 𝑠𝑛𝑠𝑛−2 ⋯ 𝑠2𝑠1

of the Weyl group𝑊 of D𝑛.

4.1.1 Maximal disjoint pairs in quadrics

Let us consider the smooth (2𝑛 − 2)-dimensional quadric (1). This variety contains two families of linear subspaces of
dimension 𝑛 − 1, parameterized by the spinor varieties (𝑛 − 1) and (𝑛). Let us describe the corresponding classes of
these linear spaces in A𝑛−1((1)):

Lemma 4.2. Let Λ𝛼 ∈ (𝑛), Λ𝛽 ∈ (𝑛 − 1) be linear spaces of dimension 𝑛 − 1 contained in(1). Then

[Λ𝛼] = [𝑋𝑤𝛼], [Λ𝛽] = [𝑋𝑤𝛽 ].

Proof. Let us prove the statement forΛ𝛼; the argument forΛ𝛽 is analogous. This linear space can be seen as the image into
(1) of the fiber of the natural map 𝐺∕𝐵 → (𝑛) over one point. This fiber belongs to the class [𝑋𝑣] in A

∙(𝐺∕𝐵), where
𝑣 ∶= 𝑤0𝐼 is the longest element of𝑊𝐼 . Note that 𝑊𝐼 is the Weyl group of the subdiagram 𝐼 = A𝑛−1 ⊂ , obtained by
deleting the 𝑛th node. We then write 𝑣 = 𝑣𝐾𝑣𝐾 with 𝑣𝐾 ∈ (𝑊𝐼)

𝐾 , 𝑣𝐾 ∈ (𝑊𝐼)𝐾 = 𝑊𝐾 (Lemma 2.7) and, by Remark 2.17,
[Λ𝛼] = [𝑋𝑣𝐾 ] ∈ A

∙((1)).
By Remark 2.8, 𝑣𝐾 = 𝑤0𝐾 , and 𝑣𝐾 is the maximal element of the poset (𝑊𝐼)

𝐾 . Since the set 𝐾 is the complement of the
first node in𝐼 , by Example 3.5 we get 𝑣𝐾 = 𝑠𝑛−1𝑠𝑛−2 ⋯ 𝑠1, which is precisely 𝑤𝛼. □

Lemma 4.3. Let 𝑤0 be the longest element in the Weyl group𝑊 of; then{
𝑤0𝑤𝛼 = 𝑤𝛼𝑤0 if 𝑛 is even
𝑤0𝑤𝛼 = 𝑤𝛽𝑤0 if 𝑛 is odd.

(9)

Proof. By item (IX) in [3, Planche IV] the conjugation with 𝑤0 in𝑊 is the identity if 𝑛 is even, while it fixes 𝑠1, … , 𝑠𝑛−2
and interchanges 𝑠𝑛−1 and 𝑠𝑛 if 𝑛 is odd. Then, the result follows by definition of 𝑤𝛼 and 𝑤𝛽 . □
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186 MUÑOZ et al.

Remark 4.4. By Equation (4) and Example 3.5, we have:

[𝑋𝑤𝛼] = [𝑋
(𝑤0𝑤𝛼)

𝐽
] =

{
[𝑋𝑤𝛼𝑤

𝐽
0 ] = [𝑋𝑤𝛽 ] if 𝑛 is even

[𝑋𝑤𝛽𝑤
𝐽
0 ] = [𝑋𝑤𝛼] if 𝑛 is odd

(10)

In particular, we re-obtain in the language of reduced expressions the well-known properties of the intersection of linear
subspaces of maximal dimension contained in a smooth (2𝑛 − 2)-dimensional quadric:

[𝑋𝑤𝛽 ] ⋅ [𝑋𝑤𝛼] =

{
[𝑋𝑤𝛽 ] ⋅ [𝑋

𝑤𝛽 ] ≠ 0 if 𝑛 is even
[𝑋𝑤𝛽 ] ⋅ [𝑋

𝑤𝛼] = 0 if 𝑛 is odd

[𝑋𝑤𝛼] ⋅ [𝑋𝑤𝛼] =

{
[𝑋𝑤𝛼] ⋅ [𝑋

𝑤𝛽 ] = 0 if 𝑛 is even
[𝑋𝑤𝛼] ⋅ [𝑋

𝑤𝛼] ≠ 0 if 𝑛 is odd

[𝑋𝑤𝛽 ] ⋅ [𝑋𝑤𝛽 ] =

{
[𝑋𝑤𝛽 ] ⋅ [𝑋

𝑤𝛼] = 0 if 𝑛 is even
[𝑋𝑤𝛽 ] ⋅ [𝑋

𝑤𝛽 ] ≠ 0 if 𝑛 is odd

Furthermore, we may now describe in our language all the md-pairs of Schubert cycles in quadrics of even dimension.

Proposition 4.5. If 𝑢𝐽, 𝑣𝐽 ∈ 𝑊𝐽 , then ([𝑋𝑢𝐽 ], [𝑋𝑣
𝐽
]) is an md-pair in(1) if and only if {𝑢𝐽, 𝑣𝐽} = {𝑤𝛼, 𝑤𝛽}.

Proof. Let 𝑢𝐽, 𝑣𝐽 be two elements in 𝑊𝐽 , and assume, without loss of generality, that 𝓁(𝑣𝐽) ≤ 𝓁(𝑢𝐽). Recalling
Proposition 2.20 (4), we have to show that 𝑣𝐽 ≤ 𝑢𝐽 unless {𝑢𝐽, 𝑣𝐽} = {𝑤𝛼, 𝑤𝛽} and this follows from Lemma 3.6 (3). □

Pulling back an md-pair of Schubert cycles in (1), we get an md-pair of Schubert cycles in 𝐺∕𝐵. By Proposition 4.5,
these md-pairs can be characterized as follows.

Lemma 4.6. An md-pair ([𝑋𝑢], [𝑋𝑣]) in 𝐺∕𝐵 = (Δ) is a pullback from (1) if and only if {𝑣𝐽, 𝑢𝐽} = {𝑤𝛼, 𝑤𝛽}. In
particular, 𝓁(𝑣) = 𝑐(𝑢) = 𝑛 − 1.

Proof. Note first that if ([𝑋𝑢], [𝑋𝑣]) is anmd-pair in𝐺∕𝐵, then 𝑐(𝑢) + 𝓁(𝑣) = 2𝑛 − 2 by Theorem 1.1. If {𝑣𝐽, 𝑢𝐽} = {𝑤𝛼, 𝑤𝛽},
then 𝑐𝐽(𝑢) = 𝑛 − 1, 𝓁(𝑣𝐽) = 𝑛 − 1. Then, it follows that 𝑐𝐽(𝑢) = 0 and 𝓁(𝑣𝐽) = 0, i.e. 𝑢𝐽 = 𝑤0𝐽 and 𝑣 = 𝑣𝐽 . In particular, by
Remark 2.17, we get that 𝑋𝑢 is a pullback from(1). We show now that 𝑋𝑣 = 𝑤0𝑋𝑤0𝑣 = 𝑤0𝑋𝑤0𝑣𝐽 is a pullback, as well. In
the case 𝑣 = 𝑤𝛼—the case of 𝑣 = 𝑤𝛽 is analogous—this follows from Equation (9), which implies that:

𝑤0𝑤𝛼 =

{
𝑤𝛼𝑤0 = 𝑤𝛼𝑤

𝐽
0
𝑤0𝐽 = 𝑤𝛽𝑤0𝐽 if 𝑛 is even

𝑤𝛽𝑤0 = 𝑤𝛽𝑤
𝐽
0
𝑤0𝐽 = 𝑤𝛼𝑤0𝐽 if 𝑛 is odd

To prove the other implication, up to replacing 𝑢 and 𝑣 with 𝑤0𝑢, 𝑤0𝑣, we can assume that 𝓁(𝑣) ≤ 𝑐(𝑢). Then, if the pair
([𝑋𝑢], [𝑋

𝑣]) is a pullback we have 𝑣𝐽 ≤ 𝑢𝐽 = 𝑤0𝐽 , so [𝑋𝑢] ⋅ [𝑋𝑣] = 0 implies 𝑣𝐽 ≰ 𝑢𝐽 . Since

𝓁(𝑣𝐽) ≤ 𝓁(𝑣) = 𝓁(𝑤𝐽
0
) − 𝑐(𝑢) ≤ 𝓁(𝑤𝐽

0
) − 𝑐𝐽(𝑢) = 𝓁(𝑢𝐽),

by Lemma 3.6 (3) we must have {𝑣𝐽, 𝑢𝐽} = {𝑤𝛼, 𝑤𝛽}. □

4.1.2 Maximal disjoint pairs in spinor varieties

We will consider now the spinor variety(𝑛) (the case of(𝑛 − 1) is analogous); we define

𝜃𝛽 ∶= 𝑠1 ⋯ 𝑠𝑛−3𝑠𝑛−2𝑠𝑛 = 𝑤
−1
𝛽
, 𝜃𝛼 ∶= 𝑠1 ⋯ 𝑠𝑛−3𝑠𝑛−2𝑠𝑛−1 = 𝑤

−1
𝛼 ,
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MUÑOZ et al. 187

and, for every 𝑙 ≤ 𝑛 − 1:

𝜃𝛼(𝑙) ∶= 𝜃𝛼⌈𝑛 − 𝑙 − 1⌉ = (𝜔𝛼⌊𝑙⌋)−1, 𝜃𝛽(𝑙) ∶= 𝜃𝛽⌈𝑛 − 𝑙 − 1⌉ = (𝜔𝛽⌊𝑙⌋)−1,
which are (reduced) right subexpressions of length 𝑙 of 𝜃𝛼, 𝜃𝛽 . Then, as shown in [16, p. 707], setting 𝛾 = 𝛽 if 𝑛 is even and
𝛾 = 𝛼 if 𝑛 is odd, every element of𝑊𝐼 has a reduced expression of the form

𝜃𝛾(𝑙1) … 𝜃𝛽(𝑙𝑛−3)𝜃𝛼(𝑙𝑛−2)𝜃𝛽(𝑙𝑛−1),

where (𝑙1, 𝑙2, … , 𝑙𝑛−1) is either the sequence (1, 2, … , 𝑛 − 1), corresponding to 𝑤𝐼0, or a nondecreasing (𝑛 − 1)-tuple of
nonnegative integers of the form

0 = 𝑙1 = ⋯ = 𝑙𝑘 < 𝑙𝑘+1 < ⋯ < 𝑙𝑛−1 ≤ 𝑛 − 1. (11)

Of particular interest is the element corresponding to the sequence (0, 1, … , 𝑛 − 3, 𝑛 − 2), that we denote by 𝜎𝛽 ; the class
[𝑋𝜎𝛽 ] is the class of a subvariety Σ𝑝 (cf. Example 3.3), parameterizing linear spaces of maximal dimension inD𝑛(1) passing
through a point 𝑝. In fact, it is the image in (𝑛) of the fiber of 𝐺∕𝐵 → (1) over 𝑝; this fiber belongs to the class [𝑋𝑣]
in A∙(𝐺∕𝐵), where 𝑣 = 𝑤0𝐽 is the longest element of𝑊𝐽 . Note that𝑊𝐽 is the Weyl group of the subdiagram𝐽 = D𝑛−1 ⊂

, obtained by deleting the first node of . We write 𝑣 = 𝑣𝐾𝑣𝐾 with 𝑣𝐾 ∈ (𝑊𝐽)
𝐾 , 𝑣𝐾 ∈ (𝑊𝐽)𝐾 = 𝑊𝐾 (Lemma 2.7). By

Remark 2.8, 𝑣𝐾 = 𝑤0𝐾 ; and 𝑣𝐾 is the maximal element of the poset (𝑊𝐽)
𝐾 , so it is the element of (𝑊𝐽)

𝐾 corresponding to
the sequence (1, … , 𝑛 − 3, 𝑛 − 2), hence 𝑣𝐾 = 𝜎𝛽 .

Lemma 4.7. In the Weyl group of we have that

𝜎𝛽 =

{
𝜃𝛽𝑤

𝐼
0

𝑛 even
𝜃𝛼𝑤

𝐼
0

𝑛 odd

Proof. We will prove that 𝑤𝐼
0
= 𝜃−1

𝛽
𝜎𝛽 if 𝑛 is even. The proof that 𝑤𝐼0 = 𝜃

−1
𝛼 𝜎𝛽 if 𝑛 is odd is similar. Write

𝜃−1
𝛽
𝜎𝛽 = 𝑠𝑛𝑠𝑛−2 ⋯ 𝑠2𝑠1𝜃𝛼(1)𝜃𝛽(2)⋯𝜃𝛼(𝑛 − 3)𝜃𝛽(𝑛 − 2).

Since 𝑠𝑖 commutes with all the reflections in 𝜃𝛾(𝑙) if 𝑙 ≤ 𝑛 − 1 − 𝑖, we can write

𝜃−1
𝛽
𝜎𝛽 = 𝑠𝑛𝑠𝑛−2𝜃𝛼(1)𝑠𝑛−3𝜃𝛽(2)⋯ 𝑠2𝜃𝛼(𝑛 − 3)𝑠1𝜃𝛽(𝑛 − 2).

Observing that 𝑠𝑖𝜃𝛾(𝑛 − 𝑖 − 1) = 𝜃𝛾(𝑛 − 𝑖) for 𝑖 ≤ 𝑛 − 2 and that 𝑠𝑛 = 𝜃𝛽(1) we get

𝜃−1
𝛽
𝜎𝛽 = 𝜃𝛽(1)𝜃𝛼(2)𝜃𝛽(3)⋯𝜃𝛼(𝑛 − 2)𝜃𝛽(𝑛 − 1) = 𝑤

𝐼
0
. □

By Lemma 4.3, for 𝑛 even we have 𝑤0𝜃𝛽 = 𝜃𝛽𝑤0 while, for 𝑛 odd we have 𝑤0𝜃𝛽 = 𝜃𝛼𝑤0. Therefore, in all cases

(𝑤0𝜃𝛽)
𝐼 = (𝜃𝛾𝑤

𝐼
0
𝑤0𝐼)

𝐼 = 𝜃𝛾𝑤
𝐼
0
= 𝜎𝛽, (12)

hence, by formula (4), [𝑋𝜃𝛽 ] = [𝑋𝜎𝛽 ], from which we deduce

[𝑋𝜎𝛽 ] ⋅ [𝑋𝜎𝛽 ] = [𝑋𝜎𝛽 ] ⋅ [𝑋
𝜃𝛽 ] = 0.

The geometric explanation of the above formula is the following: there are no lines, hence no linear spaces, passing through
two general points of(1) and contained in it.
The next statement describes some properties of md-pairs in(Δ) that are not pullbacks from(1). We need to exclude

here the case 𝑛 = 4, for which the statement does not hold, but whose md-pairs can be computed directly using SageMath
(cf. Appendix A.2).

Proposition 4.8. Let ([𝑋𝑢], [𝑋𝑣]) be an md-pair in(Δ) which is not a pullback from(1), and 𝑛 ≥ 5. If 𝓁(𝑣) ≤ 𝑐(𝑢) then
𝓁(𝑣) = 𝑐(𝑢), 𝑐𝐽(𝑢) = 𝓁(𝑣𝐽) = 1, and ([𝑋𝑢𝐽 ], [𝑋

𝑣𝐽 ]) is an md-pair for𝐽(𝐽).
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188 MUÑOZ et al.

Proof. First of all we note that, by Lemma 4.6 and Lemma 3.6 (3), we have 𝑣𝐽 ≤ 𝑢𝐽 . We claim that 𝑐𝐽(𝑢) + 𝓁(𝑣𝐽) ≤ 2. If this
were not the case, then

𝑐𝐽(𝑢) + 𝓁(𝑣𝐽) ≤ 2(𝑛 − 1) − 3 = h(𝐽) − 1,

so that 𝑣𝐽 ≤ 𝑢𝐽 by Theorem 1.1 and Proposition 2.13 (4). It would then follow that 𝑣 ≤ 𝑢, against the assumption [𝑋𝑢] ⋅
[𝑋𝑣] = 0.
Wewill prove the statement by induction, starting from the case 𝑛 = 5, in which the proposition can be proved by listing

all the possible cases (see Appendix A.2).
Step 1. Prove that 𝑐𝐽(𝑢) ≠ 0.
Assume the contrary. Set𝑚 = 2 − 𝓁(𝑣𝐽). Note that

𝓁(𝑣𝐽⌈𝑚⌉) = 𝓁(𝑣) − 2 < 𝑐(𝑢) = 𝑐𝐽(𝑢) (13)

and

𝓁(𝑣𝐽⌈𝑚⌉) + 𝑐𝐽(𝑢) = 𝓁(𝑣) − 2 + 𝑐(𝑢) = 2(𝑛 − 2). (14)

If [𝑋𝑢𝐽 ] ⋅ [𝑋
𝑣𝐽⌈𝑚⌉] = 0, then ([𝑋𝑢𝐽 ], [𝑋𝑣𝐽⌈𝑚⌉]) is an md-pair for the diagram𝐽(𝐽). It is not a pullback from the quadric

𝐽(2) otherwise Lemma 4.6 would tell us that

𝑛 − 2 = 𝓁(𝑣𝐽⌈𝑚⌉) = 𝓁(𝑣𝐽) − 𝑚 = 𝓁(𝑣) − 2,

contradicting the assumption 𝓁(𝑣) ≤ 𝑛 − 1. Then, we may apply induction on 𝑛, to claim that 𝓁(𝑣𝐽⌈𝑚⌉) = 𝑐(𝑢𝐽) = 𝑐𝐽(𝑢),
which contradicts Equation (13); we conclude that [𝑋𝑢𝐽 ] ⋅ [𝑋

𝑣𝐽⌈𝑚⌉] ≠ 0 and so, by Proposition 2.13 (4) 𝑣𝐽⌈𝑚⌉ ≤ 𝑢𝐽 .
On the other hand, 𝑣𝐽𝑣𝐽⌊𝑚⌋ has length two hence, by Lemma 3.6 (2.a), we have 𝑣𝐽𝑣𝐽⌊𝑚⌋ ≤ 𝑢𝐽 = 𝑤𝐽

0
, and so 𝑣 =

𝑣𝐽𝑣𝐽⌊𝑚⌋𝑣𝐽⌈𝑚⌉ ≤ 𝑢, contradicting the fact that ([𝑋𝑢], [𝑋𝑣]) is an md-pair .
Step 2. Prove that 𝓁(𝑣𝐽) ≠ 0.
Assume the contrary. In particular, 𝑠1 ≰ 𝑣. By Step 1, we know that 𝑐𝐽(𝑢) = 1 or 2; set𝑚 = 3 − 𝑐𝐽(𝑢)which is equal to 2

or 1, respectively. Since 𝑢𝐽 = 𝑤𝐽
0
⌈𝑐𝐽(𝑢)⌉, by the description of 𝑤𝐽

0
in Example 3.5 and Lemma 3.6 (2.b) we get 𝑣⌊𝑚⌋ ≤ 𝑢𝐽 .

On the other hand, we have

𝓁(𝑣⌈𝑚⌉) + 𝑐𝐽(𝑢) = 𝓁(𝑣) − 𝑚 + 𝑐𝐽(𝑢) = 𝓁(𝑣) + 𝑐(𝑢) − 3 = h(𝐽) − 1

so, by Theorem 1.1 and Proposition 2.13 (4), we get 𝑣⌈𝑚⌉ ≤ 𝑢𝐽 , and conclude that 𝑣 ≤ 𝑢, contradicting the fact that
([𝑋𝑢], [𝑋

𝑣]) is an md-pair.
We have thus shown that 𝑐𝐽(𝑢), 𝓁(𝑣𝐽) ≠ 0, so—by the claim at the beginning of the proof—necessarily (𝑐𝐽(𝑢), 𝓁(𝑣𝐽)) =

(1, 1). This implies that 𝑣𝐽 = 𝑠1, 𝑢𝐽 = 𝑤𝐽0⌈1⌉, 𝓁(𝑣𝐽) = 𝓁(𝑣) − 1, and 𝑐𝐽(𝑢) = 𝑐(𝑢) − 1.
By direct inspection of the reduced expressions of the word 𝑢𝐽 = 𝑤𝐽

0
⌈1⌉, we have 𝑣𝐽 ≤ 𝑢𝐽 . If [𝑋𝑢𝐽 ] ⋅ [𝑋𝑣𝐽 ] ≠ 0 then 𝑣𝐽 ≤

𝑢𝐽 and 𝑣 ≤ 𝑢, a contradiction.
Hence, [𝑋𝑢𝐽 ] ⋅ [𝑋

𝑣𝐽 ] = 0, i.e., ([𝑋𝑢𝐽 ], [𝑋
𝑣𝐽 ]) is an md-pair for 𝐽(𝐽) and, by Lemma 4.6 and induction, we get 𝓁(𝑣𝐽) =

𝑐𝐽(𝑢) = 𝑛 − 2, so 𝓁(𝑣) = 𝑐(𝑢) = 𝑛 − 1. □

Corollary 4.9. If ([𝑋𝑢], [𝑋𝑣]) is an md-pair for(𝑛) then (𝑢, 𝑣) = (𝜎𝛽, 𝜃𝛽), or 𝑛 = 4 and (𝑢, 𝑣) = (𝜎𝛽, 𝜃𝛽) or (𝑠1𝑠2𝑠4, 𝜃𝛼).

Proof. For 𝑛 = 4, the description of the md-pairs in D4(4) can be obtained from Proposition 4.5 by permuting the indices
1 and 4 in the diagram D4.
For 𝑛 ≥ 5, we set 𝑢′ = 𝑢𝑤0𝐼 ; the pair ([𝑋𝑢′], [𝑋𝑣]) is an md-pair for (Δ) which is not a pullback from (1), hence,

by Proposition 4.8, we have 𝓁(𝑣) = 𝑐(𝑢) = 𝑛 − 1 and 𝑣𝐽 = 𝑠1. From the description of elements of𝑊𝐼 given in 4.1.2, we
see that the only element of length 𝑛 − 1 containing 𝑠1 is 𝜃𝛽 , hence 𝑣 = 𝜃𝛽 is the element corresponding to the sequence
𝑎 = (0, … , 0, 𝑛 − 1). Let 𝑏 = (𝑏1, … , 𝑏𝑛−1) be the sequence corresponding to 𝑢. We have∑

𝑏𝑖 = 𝓁(𝑢) = dim(𝑛) − 𝑛 − 1 =
(𝑛 − 1)(𝑛 − 2)

2

and 𝑏𝑛−1 < 𝑎𝑛−1 = 𝑛 − 1 since ([𝑋𝑢], [𝑋𝑣]) is an md-pair. This forces 𝑏 = (0, 1, … , 𝑛 − 3, 𝑛 − 2), that is, 𝑢 = 𝜎𝛽 . □

 15222616, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.202300036 by U
niversita D

i T
rento, W

iley O
nline L

ibrary on [11/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



MUÑOZ et al. 189

4.2 Effective good divisibility of 𝐃𝒏-varieties

In this section, we will conclude the proof of Theorem 1.2. The main ingredient here will be the following.

Proposition 4.10. The only md-pairs ([𝑋𝑢], [𝑋𝑣]) for(Δ) are pullbacks from(1),(𝑛 − 1) or(𝑛).

In fact, with this statement at hand we may now argue as follows.

Proof of Theorem 1.2. From Example 3.2, Theorem 1.1, and Corollary 2.18, we know that, for any 𝑅 ⊂ Δ,

2𝑛 − 3 = e. d.((Δ)) ≤ e. d.((𝑅)) ≤ 2𝑛 − 2.

If e. d.((𝑅)) = 2𝑛 − 3, pulling back to(Δ) an md-pair for(𝑅) we get an md-pair for(Δ), and, by Proposition 4.10, 𝑅
meets {1, 𝑛 − 1, 𝑛}. □

Before proving Proposition 4.10, let us show the following.

Lemma 4.11. Let ([𝑋𝑢], [𝑋𝑣]) be an md-pair for (Δ); if 𝑋𝑣 is a pullback from (𝑟), 𝑟 = 1, 𝑛 − 1 or 𝑛, then also 𝑋𝑢 is a
pullback from the same variety.

Proof. Let 𝜋 ∶ (Δ) → (𝑟) be the natural projection. If 𝑋𝑣 is a pullback from (𝑟), then 𝑋𝑢 ∩ 𝑋𝑣 = ∅ if and only if
𝜋(𝑋𝑢) ∩ 𝜋(𝑋

𝑣) = ∅.
Since𝑋𝑣 is a pullback then codim(𝜋(𝑋𝑣),(𝑟)) = codim(𝑋𝑣,(Δ)), while codim(𝜋(𝑋𝑢),(𝑟)) ≥ codim(𝑋𝑢,(Δ)) and

equality holds if and only if 𝑋𝑢 is a pullback. Since the effective good divisibilities of (Δ) and (𝑟) are equal, the
conclusion follows. □

Proof of Proposition 4.10. We start by noting that in the cases 𝑛 = 4, 5 the statement can be proved by listing all the possible
md-pairs and checking that they are pullbacks from(1),(𝑛 − 1), or(𝑛). (See Appendices A.2 and A.3). We prove the
statement for 𝑛 ≥ 6 by induction.
By Lemma 4.6 and Proposition 4.8 either ([𝑋𝑢], [𝑋𝑣]) is a pullback from (1) or 𝓁(𝑣) = 𝑐(𝑢) = 𝑛 − 1, (𝑐𝐽(𝑢), 𝓁(𝑣𝐽)) =

(1, 1) (in particular 𝑣𝐽 = 𝑠1), and ([𝑋𝑢𝐽 ], [𝑋
𝑣𝐽 ]) is an md-pair for 𝐽 . By induction ([𝑋𝑢𝐽 ], [𝑋

𝑣𝐽 ]) is a pullback from
𝐽(2),𝐽(𝑛 − 1) or𝐽(𝑛).
If 𝑋𝑢𝐽 , 𝑋

𝑣𝐽 were pullbacks from 𝐽(2), by Lemma 4.6 we would have, setting 𝐽′ ∶= 𝐽 ⧵ {2}, 𝑤′𝛼 ∶= 𝑠𝑛−1𝑠𝑛−2 ⋯ 𝑠2 and
𝑤′
𝛽
∶= 𝑠𝑛𝑠𝑛−2 ⋯ 𝑠2, that

(𝑣𝐽, 𝑢𝐽) = (𝑤
′
𝛼, 𝑤

′
𝛼𝑤0𝐽′ ) or (𝑤′𝛽, 𝑤

′
𝛽
𝑤0𝐽′ ).

Therefore, since 𝑣𝐽 = 𝑠1 we would get

𝑣 = 𝑠𝑛𝑠𝑛−2 ⋯ 𝑠3𝑠1𝑠2, or 𝑣 = 𝑠𝑛−1𝑠𝑛−2 ⋯ 𝑠3𝑠1𝑠2,

hence 𝑣⌊𝑛 − 2⌋ ≤ 𝑢𝐽 = 𝑤𝐽
0
⌈1⌉ (see Example 3.5). In every case 𝑣⌈𝑛 − 2⌉ = 𝑠2 ≤ 𝑢𝐽 , therefore 𝑣 ≤ 𝑢, against the assump-

tions.
If𝑋𝑢𝐽 , 𝑋

𝑣𝐽 are pullbacks from𝐽(𝑛), then 𝑣𝐽 = 𝜃′𝛽 = 𝑠2 ⋯ 𝑠𝑛−3𝑠𝑛−2𝑠𝑛 and 𝑢𝐽 = 𝜎′𝛽𝑤0𝐾 (see Corollary 4.9). It follows that
𝑣 = 𝑠1𝑣𝐽 = 𝜃𝛽 and 𝑤0𝑣 = 𝜎𝛽𝑤0𝐼 (see Equation (12)). In particular, [𝑋𝑣] = [𝑋𝑤0𝑣] = [𝑋𝜎𝛽𝑤0𝐼 ] is a pullback from (𝑛). By
Lemma 4.11, 𝑋𝑢 is a pullback from(𝑛), too.
If 𝑋𝑢𝐽 , 𝑋

𝑣𝐽 are pullbacks from𝐽(𝑛 − 1), the argument is analogous. □

5 MORPHISMS TO RATIONAL HOMOGENEOUS VARIETIES

In this section, we are going to prove Theorem 1.3. This result is a refined, more general version of [13, Proposition 4.7], in
which the proof was done by using Chern classes of pullbacks of universal bundles.
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190 MUÑOZ et al.

Remark 5.1. For every 𝑟 ∈ 𝑅, denote by 𝜋𝑟 the natural map (𝑅) → (𝑟). Since (𝑅) can be identified with a subvariety
of

∏
𝑟∈𝑅

(𝑟) so that the maps 𝜋𝑟 are restrictions of the natural projections, then 𝑓 ∶ 𝑀 → (𝑅) is constant if and only
if 𝜋𝑟◦𝑓 is constant for every 𝑟. As a consequence, in the setup of Theorem 1.3 we may assume, without loss of generality,
that 𝑅 consists of a single element 𝑟.

The key result to relate e. d.(𝑀) with the existence of nonconstant morphisms from 𝑀 to a homogeneous variety (in
particular to a rational homogeneous varieties 𝐺∕𝑃) is the following:

Lemma 5.2. Let 𝑀 be a smooth complex projective variety, 𝑋 a complex variety with a transitive action of a connected
algebraic group 𝐺, and 𝜑 ∶ 𝑀 → 𝑋 a morphism, with image𝑀′. If [𝐴] ∈ A𝑎(𝑋), [𝐵] ∈ A𝑏(𝑋) are effective classes satisfying
[𝐴] ⋅ [𝐵] = 0 and 𝑎 + 𝑏 ≤ e. d.(𝑀) then, either [𝑀′] ⋅ [𝐴] = 0, or [𝑀′] ⋅ [𝐵] = 0; in particular 𝜑 is not surjective.

Proof. For a general 𝑔, 𝑔′ ∈ 𝐺, 𝑔𝐴 and 𝑔′𝐵 are disjoint and generically transverse to 𝜑, that is, 𝜑−1(𝑔𝐴), 𝜑−1(𝑔′𝐵) are
generically reduced and of the same codimensions as 𝐴, 𝐵 ⊂ 𝑋 (see [5, Theorem 1.7]). Note that the existence of the tran-
sitive action of 𝐺 on 𝑋 implies that 𝑋 is quasi-projective and, in particular, we may apply [5, Theorem 1.23], to get that
𝜑∗[𝐴] = [𝜑−1(𝑔𝐴)] and 𝜑∗[𝐵] = [𝜑−1(𝑔′𝐵)]; since 𝜑∗[𝐴] ⋅ 𝜑∗[𝐵] = 0, by the assumptions on e. d.(𝑀) either [𝜑−1(𝑔𝐴)] or
[𝜑−1(𝑔′𝐵)] is the zero class in𝑀. We conclude by noting that [𝜑−1(𝑔𝐴)] = 0 is equivalent to [𝑀′] ⋅ [𝐴] = 0. □

Corollary 5.3. Let 𝑀 and 𝑀′ be complex projective varieties, with 𝑀 smooth and e. d.(𝑀) > dim𝑀′. Then, there are no
nonconstant morphisms 𝜑 ∶ 𝑀 → 𝑀′.

Proof. Let 𝑓 ∶ 𝑀 → 𝑀′ be a morphism; replacing𝑀′ with the image of 𝑓 wemay assume that 𝑓 is surjective. Composing
with a finitemorphism 𝑔 ∶ 𝑀′ → ℙdim𝑀′ we get amorphism𝜑 ∶ 𝑀 → ℙdim𝑀′ , which is constant by Lemma 5.2. It follows
that 𝑓 is constant. □

Corollary 5.4. If is a diagramof classical type and𝑀 is a smooth complex projective variety such that e. d.(𝑀) > e. d.((1))
then there are no nonconstant morphisms 𝜑 ∶ 𝑀 → (1).

Proof. In view of Lemma 5.2 a morphism 𝜑 ∶ 𝑀 ↠ 𝑀′ ⊆ (1) cannot be surjective. Since, in all cases e. d.((1)) ≥
dim(1) − 1 (see Theorem 1.2), we get e. d.((1)) ≥ dim𝑀′, hence e. d.(𝑀) > dim𝑀′; by Corollary 5.3 we get that 𝜑
is constant. □

Let us now describe, in the following example, two rational maps that will be used in the proof of Theorem 1.3.

Example 5.5. Let 𝑝 ∈ ℙ𝑛 be a point, 𝐻 a hyperplane not containing 𝑝, and 𝑟 an integer 2 ≤ 𝑟 ≤ 𝑛. We will consider two
rational maps defined on A𝑛(𝑟).
To unify the notation, we will use the convention that A𝑛−1(𝑛) is a single point.

1. The linear projection from 𝑝 onto𝐻 induces a rational map

𝜋𝑝 ∶ A𝑛(𝑟) ⤏ A𝑛−1(𝑟),

sending Λ to 𝜋𝑝(Λ). It is not defined in the subvariety Σ𝑝 ⊂ A𝑛(𝑟), parameterizing (𝑟 − 1)-dimensional linear spaces
passing through 𝑝. The fiber of 𝜋𝑝 over Λ ∈ A𝑛−1(𝑟) consists of the (𝑟 − 1)-dimensional linear spaces contained in⟨Λ, 𝑝⟩ and not containing 𝑝, therefore is an affine space 𝔸𝑟.

2. We can also define a rational map

𝜋𝐻 ∶ A𝑛(𝑟) ⤏ A𝑛−1(𝑟 − 1),

sending Λ to Λ ∩ 𝐻. This map is not defined on the subvariety Σ𝐻 ⊂ A𝑛(𝑟), parameterizing (𝑟 − 1)-dimensional lin-
ear spaces contained in 𝐻. The fiber of 𝜋𝐻 over Λ ∈ A𝑛−1(𝑟 − 1) consists of the (𝑟 − 1)-dimensional linear spaces
containing Λ and not contained in𝐻, therefore is an affine space 𝔸𝑛−𝑟+1.

The fact that the fibers of the above maps are affine provides the following:
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Lemma 5.6. Let 𝑟, 𝑛 be integers such that 2 ≤ 𝑟 ≤ 𝑛, let 𝜑 ∶ 𝑀 ↠ 𝑀′ ⊆ A𝑛(𝑟) a morphism from a projective variety𝑀. Let
Σ𝑝, Σ𝐻 ⊆ A𝑛(𝑟) be as in Example 5.5.

1. If𝑀′ ∩ Σ𝑝 = ∅ and 𝜋𝑝◦𝜑 is constant, then 𝜑 is constant.
2. If𝑀′ ∩ Σ𝐻 = ∅ and 𝜋𝐻◦𝜑 is constant, then 𝜑 is constant.

We are now ready to prove the main result of the section.

Proof of Theorem 1.3. By Remark 5.1, we can consider only morphisms𝑀 → (𝑟) to varieties of Picard number one and,
by Corollary 5.4, we can assume that 𝑟 ≥ 2.

Case 1.  of type A.
Let 𝑛 be the minimum integer such that there exists a nonconstant morphism 𝜑 ∶ 𝑀 ↠ 𝑀′ ⊆ A𝑛(𝑟) for some 𝑟. We will

show that 𝑛 = e. d.(A𝑛(𝑟)) ≥ e. d.(𝑀). Assume by contradiction that 𝑛 < e. d.(𝑀).
Let 𝑝 ∈ ℙ𝑛 be a general point, 𝐻 ⊂ ℙ𝑛 a general hyperplane, and define Σ𝑝, Σ𝐻 as in Example 5.5. Then, clearly [Σ𝑝] ⋅

[Σ𝐻] = 0. The variety Σ𝑝 is isomorphic to A𝑛−1(𝑟 − 1), so it has codimension 𝑛 + 1 − 𝑟 in A𝑛(𝑟)while Σ𝐻 is isomorphic to
A𝑛−1(𝑟), so it has codimension 𝑟 in A𝑛(𝑟). Therefore, codimΣ𝑝 + codimΣ𝐻 = 𝑛 + 1 ≤ e. d.(𝑀).
By Lemma 5.2, we then have that either [𝑀′] ⋅ [Σ𝑝] = 0 or [𝑀′] ⋅ [Σ𝐻] = 0.
In the first case, 𝜋𝑝◦𝜑 is a morphism from 𝑀 to 𝐴𝑛−1(𝑟), which is constant by our choice of 𝑛; we can then apply

Lemma 5.6 to get that 𝜑 is constant. In the second case, we consider 𝜋𝐻◦𝜑 and use a similar argument.

Case 2.  = B𝑛, C𝑛 or D𝑛.
Let(1) ⊆ ℙ𝑁 be the minimal embedding of(1) and 𝑝 ∈ (1) a general point,𝐻 ⊂ ℙ𝑁 a general hyperplane and Σ𝑝,

Σ𝐻 the subvarieties of (𝑟) parameterizing (𝑟 − 1)-dimensional linear spaces in (1) passing through 𝑝 or, respectively,
contained in 𝐻. Let 𝜑 ∶ 𝑀 ↠ 𝑀′ ⊆ (𝑟) be a nonconstant morphism.
Clearly, [Σ𝑝] ⋅ [Σ𝐻] = 0 and in all cases but = D𝑛, 𝑟 = 𝑛 − 1, 𝑛 we have (cf. Examples 3.1 and 3.2)

codimΣ𝑝 + codimΣ𝐻 = e. d.((𝑟)) + 1 ≤ e. d.(𝑀).

By Lemma 5.2, the intersection of [𝑀′]with [Σ𝑝] or [Σ𝐻] is zero. In the cases = D𝑛, 𝑟 = 𝑛 − 1, 𝑛we have [Σ𝑝] ⋅ [Σ𝑝] =
0 and codimΣ𝑝 + codimΣ𝑝 = e. d.((𝑟)) + 1 ≤ e. d.(𝑀), hence, by Lemma 5.2 we have [𝑀′] ⋅ [Σ𝑝] = 0.
If [𝑀′] ⋅ [Σ𝑝] = 0, we consider the restriction to 𝑀′ ⊂ (𝑟) ⊂ A𝑁(𝑟) of the morphism 𝜋𝑝 defined in Example 5.5;

composing with 𝜑 we get a morphism𝑀 → A𝑁−1(𝑟), which is constant by Case 1. Then, 𝜑 is constant by Lemma 5.6.
If [𝑀′] ⋅ [Σ𝐻] = 0 we consider 𝜋𝐻◦𝜑 ∶ 𝑀 → A𝑁−1(𝑟 − 1), and conclude by a similar argument.

□
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APPENDIX A: COMPUTATIONS AND CODES

As we have seen in the previous sections, our arguments require some computations of effective good divisibility and md-
pairs for low rank groups. These computations can be done by using some built-in commands of the SageMath software
(cf. [18]). We have included in this Appendix the scripts that we have used for our purposes.

A.1 Divisibility in a fixed degree

We choose a Weyl group with Dynkin diagram and a degree 𝑑, and we check if a complete flag manifold of type has
e. d. up to degree 𝑑. For instance, in the case D4 and 𝑑 = h(D4) − 1 = 5 to check that e. d.(D4(Δ)) ≥ 5, we set

W = WeylGroup(“D4”, prefix=“r”); d=5

We define a function which computes the list of elements of a given length.

def lists(u) :
l1=[]
for w in W.elements_of_length(u):

l1.append(w.reduced_word())
return l1

We define the longest element, its length (which is the dimension of the flagmanifold𝐺∕𝐵) and we compute two lists of
words: the list of words 𝑣 of length 𝓁(𝑣) ≤ 𝑒 ∶= ⌊𝑑∕2⌋, and the list of words 𝑢 of length 𝓁0 − 𝑐(𝑢) such that 𝑒 ≤ 𝑐(𝑢) < 𝑑.
w0=W.long_element(); l0=len(w0.reduced_word())
e =floor(d/2)

words=[0]; upwords=[0]
for i in [1..e]:
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words.append([])
for i in [1..(d-1)]:

upwords.append([])

for i in [1..e]:
words[i]=lists(i)

for i in [e..(d-1)]:
upwords[i]=lists(l0-i)

We verify the condition 𝑣 ≤ 𝑢 for every pair of words such that 𝓁(𝑣) + 𝑐(𝑢) = 𝑑 and 0 < 𝓁(𝑣) ≤ 𝑐(𝑢).

bad=0
for i in [1..e]:

for w1 in words[i]:
for w2 in upwords[d-i]:

v=W.from_reduced_word(w1)
u=W.from_reduced_word(w2)
if v.bruhat_le(u) == False:

bad =bad +1
if bad == 0:

print W.cartan_type(), “has e.d. greater or equal than”, d
if bad > 0:

print W.cartan_type(), “has e.d. smaller than”, d

For instance, in case D4, checking the degrees 𝑑 = 5 and 𝑑 = 6 we find that e. d.(D4(Δ)) = 5.

A.2 Md-pairs

The following code finds the pairs of words such that 𝓁(𝑣) + 𝑐(𝑢) = 𝑑, 0 < 𝓁(𝑣) ≤ 𝑐(𝑢) and 𝑣 ≰ 𝑢; the list is empty if
𝑑 ≤ e. d.((Δ)) and gives the whole list of md-pairs if 𝑑 = e. d.((Δ)) + 1.

c=1
for i in [1..e]:

for w1 in words[i]:
for w2 in upwords[d-i]:

v=W.from_reduced_word(w1)
u=W.from_reduced_word(w2)
if v.bruhat_le(u) == False:

print c,“)l(v)=”,i,“c(u)=”, d-i,“ v=”, w1, “u=”, w2
c= c+1

For D4 in degree 𝑑 = 6 we find:

1) l(v)= 3 c(u)= 3 v=[1, 2, 3] u=[4, 2, 3, 1, 2, 4, 1, 2, 1]
2) l(v)= 3 c(u)= 3 v=[1, 2, 4] u=[3, 2, 4, 1, 2, 3, 1, 2, 1]
3) l(v)= 3 c(u)= 3 v=[3, 2, 1] u=[4, 2, 3, 1, 2, 4, 2, 3, 2]
4) l(v)= 3 c(u)= 3 v=[3, 2, 4] u=[1, 2, 4, 1, 2, 3, 1, 2, 1]
5) l(v)= 3 c(u)= 3 v=[4, 2, 1] u=[2, 3, 1, 2, 4, 1, 2, 3, 2]
6) l(v)= 3 c(u)= 3 v=[4, 2, 3] u=[2, 3, 1, 2, 4, 3, 1, 2, 1]

For D5 in degree 𝑑 = 8 we find:

1) l(v)=4 c(u)=4 v=[1,2,3,4] u= [4,3,5,2,3,4,1,2,3,5,1,2,3,1,2,1]
2) l(v)=4 c(u)=4 v=[1,2,3,5] u= [5,3,4,2,3,5,1,2,3,4,1,2,3,1,2,1]
3) l(v)=4 c(u)=4 v=[4,3,2,1] u= [3,5,2,3,4,1,2,3,5,1,2,3,4,2,3,2]
4) l(v)=4 c(u)=4 v=[5,3,2,1] u= [4,3,5,2,3,4,1,2,3,5,2,3,4,2,3,2]
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A.3 Pullbacks

We define the function dec, which computes the decomposition of an element𝑤 ∈ 𝑊 as𝑤𝐽𝑤𝐽 , where 𝐽 ⊂ Δ. This can be
used to check if a Schubert cycle 𝑋𝑤 ⊂ (Δ) is the pullback of a Schubert cycle 𝑋𝑤𝐽 ⊂ (𝐽) (see Remark 2.8).

def desc(w,J) :
for i in J:

s=[i]
u = (W.from_reduced_word(w))*(W.from_reduced_word(s))
if len(u.reduced_word())<len(w):

return u.reduced_word(),i
return w,0

def dec(w,J) :
p=[0]; pj=[0];
p.append(desc(w,J)[0])
pj.append(desc(w,J)[1])
for i in [1..l0+1]:

if pj[i]==0:
return p[i], pj[1:i]

p.append(desc(p[i],J)[0])
pj.append(desc(p[i],J)[1])

Using this function, we can check that, for the six md-pairs listed for D4, cases (3) and (5) are pullbacks from D4(1),
cases (1) and (6) are pullbacks from D4(3), and cases (2) and (4) are pullbacks from D4(4).
We can also check that, in case D5, the pairs (3) and (4) are pullbacks from D5(1), while cases (1) and (2) sat-

isfy the properties listed in Proposition 4.8. For instance, applying dec for 𝐽 = {2, 3, 4, 5} to the reduced expression
𝑢 = [4, 3, 5, 2, 3, 4, 1, 2, 3, 5, 1, 2, 3, 1, 2, 1] we get 𝑢𝐽 = [2, 3, 5, 4, 3, 2, 1] and 𝑢𝐽 = [2, 3, 2, 5, 3, 2, 4, 3, 5]. A further applica-
tion of dec for 𝐾 = {3, 4, 5} to 𝑢𝐽 shows that 𝑢𝐽 is a pullback from the first node of the diagram D4 obtained removing the
node 1.
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