Generation of robust trajectories for legged robots remains a challenging task due to the underlying nonlinear, hybrid and intrinsically unstable dynamics which needs to be stabilized through limited contact forces. Furthermore, disturbances arising from unmodelled contact interactions with the environment and model mismatches can hinder the quality of the planned trajectories leading to unsafe motions. In this work, we propose to use stochastic trajectory optimization for generating robust centroidal momentum trajectories to account for additive uncertainties on the model dynamics and parametric uncertainties on contact locations. Through an alternation between the robust centroidal and whole-body trajectory optimizations, we generate robust momentum trajectories while being consistent with the whole-body dynamics. We perform an extensive set of simulations subject to different uncertainties on a quadruped robot showing that our stochastic trajectory optimization problem reduces the amount of foot slippage for different gaits while achieving better performance over deterministic planning.

Nonlinear Stochastic Trajectory Optimization for Centroidal Momentum Motion Generation of Legged Robots / Gazar, Ahmad; Khadiv, Majid; Kleff, Sébastien; Del Prete, Andrea; Righetti, Ludovic. - 27:(2023), pp. 420-435. (Intervento presentato al convegno 18th International Symposium of Robotics Research, ISRR 2022 tenutosi a Geneva nel 25th-30th September 2022) [10.1007/978-3-031-25555-7_29].

Nonlinear Stochastic Trajectory Optimization for Centroidal Momentum Motion Generation of Legged Robots

Gazar, Ahmad
Primo
;
Del Prete, Andrea
Penultimo
;
2023-01-01

Abstract

Generation of robust trajectories for legged robots remains a challenging task due to the underlying nonlinear, hybrid and intrinsically unstable dynamics which needs to be stabilized through limited contact forces. Furthermore, disturbances arising from unmodelled contact interactions with the environment and model mismatches can hinder the quality of the planned trajectories leading to unsafe motions. In this work, we propose to use stochastic trajectory optimization for generating robust centroidal momentum trajectories to account for additive uncertainties on the model dynamics and parametric uncertainties on contact locations. Through an alternation between the robust centroidal and whole-body trajectory optimizations, we generate robust momentum trajectories while being consistent with the whole-body dynamics. We perform an extensive set of simulations subject to different uncertainties on a quadruped robot showing that our stochastic trajectory optimization problem reduces the amount of foot slippage for different gaits while achieving better performance over deterministic planning.
2023
Robotics Research
Cham, CH
SPRINGER INTERNATIONAL PUBLISHING AG
9783031255540
9783031255557
Gazar, Ahmad; Khadiv, Majid; Kleff, Sébastien; Del Prete, Andrea; Righetti, Ludovic
Nonlinear Stochastic Trajectory Optimization for Centroidal Momentum Motion Generation of Legged Robots / Gazar, Ahmad; Khadiv, Majid; Kleff, Sébastien; Del Prete, Andrea; Righetti, Ludovic. - 27:(2023), pp. 420-435. (Intervento presentato al convegno 18th International Symposium of Robotics Research, ISRR 2022 tenutosi a Geneva nel 25th-30th September 2022) [10.1007/978-3-031-25555-7_29].
File in questo prodotto:
File Dimensione Formato  
2205.13264.pdf

Open Access dal 09/03/2024

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.24 MB
Formato Adobe PDF
4.24 MB Adobe PDF Visualizza/Apri
978-3-031-25555-7.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.67 MB
Formato Adobe PDF
1.67 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/402857
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact