We prove that the four-dimensional round sphere contains a minimally embedded hypertorus, as well as infinitely many, pairwise non-isometric, immersed ones. Our analysis also yields infinitely many, pairwise non-isometric, minimally embedded hyperspheres and thus provides a self-contained solution to Chern’s spherical Bernstein conjecture in dimensions four and six.

Minimal hypertori in the four-dimensional sphere / Carlotto, Alessandro; Schulz, Mario B.. - In: ARS INVENIENDI ANALYTICA.. - ISSN 2769-8505. - 2023, 8:(2023), pp. 1-33. [10.15781/gtrt-v523]

Minimal hypertori in the four-dimensional sphere

Carlotto, Alessandro;
2023-01-01

Abstract

We prove that the four-dimensional round sphere contains a minimally embedded hypertorus, as well as infinitely many, pairwise non-isometric, immersed ones. Our analysis also yields infinitely many, pairwise non-isometric, minimally embedded hyperspheres and thus provides a self-contained solution to Chern’s spherical Bernstein conjecture in dimensions four and six.
2023
Carlotto, Alessandro; Schulz, Mario B.
Minimal hypertori in the four-dimensional sphere / Carlotto, Alessandro; Schulz, Mario B.. - In: ARS INVENIENDI ANALYTICA.. - ISSN 2769-8505. - 2023, 8:(2023), pp. 1-33. [10.15781/gtrt-v523]
File in questo prodotto:
File Dimensione Formato  
Publisher's - Minimal Hypertori in the four-dimensional Sphere.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 732.75 kB
Formato Adobe PDF
732.75 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/402690
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact