Remaining useful life (RUL) prediction is a key enabler for making optimal maintenance strategies. Data-driven approaches, especially employing neural networks (NNs) such as multi-layer perceptrons (MLPs) and convolutional neural networks (CNNs), have gained increasing attention in the feld of RUL prediction. Most of the past research has mainly focused on minimizing the RUL prediction error by training NNs with back-propagation (BP), which in general requires an extensive computational efort. However, in practice, such BP-based NNs (BPNNs) may not be afordable in industrial contexts that normally seek to save cost by minimizing access to expensive computing infrastructures. Driven by this motivation, here, we propose: (1) to use a very fast learning scheme called extreme learning machine (ELM) for training two diferent kinds of feed-forward neural networks (FFNNs), namely a single-layer feed-forward neural network (SL-FFNN) and a Convolutional ELM (CELM); and (2) to optimize the architecture of those networks by applying evolutionary computation. More specifcally, we employ a multi-objective optimization (MOO) technique to search for the best network architectures in terms of trade-of between RUL prediction error and number of trainable parameters, the latter being correlated with computational efort. In our experiments, we test our methods on a widely used benchmark dataset, the C-MAPSS, on which we search such trade-of solutions. Compared to other methods based on BPNNs, our methods outperform a MLP and show a similar level of performance to a CNN in terms of prediction error, while using a much smaller (up to two orders of magnitude) number of trainable parameters.

Evolutionary Optimization of Convolutional Extreme Learning Machine for Remaining Useful Life Prediction / Mo, Hyunho; Iacca, Giovanni. - In: SN COMPUTER SCIENCE. - ISSN 2661-8907. - 5:1(2024), pp. 5401-5417. [10.1007/s42979-023-02320-z]

Evolutionary Optimization of Convolutional Extreme Learning Machine for Remaining Useful Life Prediction

Mo, Hyunho;Iacca, Giovanni
2024-01-01

Abstract

Remaining useful life (RUL) prediction is a key enabler for making optimal maintenance strategies. Data-driven approaches, especially employing neural networks (NNs) such as multi-layer perceptrons (MLPs) and convolutional neural networks (CNNs), have gained increasing attention in the feld of RUL prediction. Most of the past research has mainly focused on minimizing the RUL prediction error by training NNs with back-propagation (BP), which in general requires an extensive computational efort. However, in practice, such BP-based NNs (BPNNs) may not be afordable in industrial contexts that normally seek to save cost by minimizing access to expensive computing infrastructures. Driven by this motivation, here, we propose: (1) to use a very fast learning scheme called extreme learning machine (ELM) for training two diferent kinds of feed-forward neural networks (FFNNs), namely a single-layer feed-forward neural network (SL-FFNN) and a Convolutional ELM (CELM); and (2) to optimize the architecture of those networks by applying evolutionary computation. More specifcally, we employ a multi-objective optimization (MOO) technique to search for the best network architectures in terms of trade-of between RUL prediction error and number of trainable parameters, the latter being correlated with computational efort. In our experiments, we test our methods on a widely used benchmark dataset, the C-MAPSS, on which we search such trade-of solutions. Compared to other methods based on BPNNs, our methods outperform a MLP and show a similar level of performance to a CNN in terms of prediction error, while using a much smaller (up to two orders of magnitude) number of trainable parameters.
2024
1
Mo, Hyunho; Iacca, Giovanni
Evolutionary Optimization of Convolutional Extreme Learning Machine for Remaining Useful Life Prediction / Mo, Hyunho; Iacca, Giovanni. - In: SN COMPUTER SCIENCE. - ISSN 2661-8907. - 5:1(2024), pp. 5401-5417. [10.1007/s42979-023-02320-z]
File in questo prodotto:
File Dimensione Formato  
s42979-023-02320-z.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 3.12 MB
Formato Adobe PDF
3.12 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/398672
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact