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Abstract
Remaining useful life (RUL) prediction is a key enabler for making optimal maintenance strategies. Data-driven approaches, 
especially employing neural networks (NNs) such as multi-layer perceptrons (MLPs) and convolutional neural networks 
(CNNs), have gained increasing attention in the field of RUL prediction. Most of the past research has mainly focused on 
minimizing the RUL prediction error by training NNs with back-propagation (BP), which in general requires an extensive 
computational effort. However, in practice, such BP-based NNs (BPNNs) may not be affordable in industrial contexts that 
normally seek to save cost by minimizing access to expensive computing infrastructures. Driven by this motivation, here, 
we propose: (1) to use a very fast learning scheme called extreme learning machine (ELM) for training two different kinds of 
feed-forward neural networks (FFNNs), namely a single-layer feed-forward neural network (SL-FFNN) and a Convolutional 
ELM (CELM); and (2) to optimize the architecture of those networks by applying evolutionary computation. More specifi-
cally, we employ a multi-objective optimization (MOO) technique to search for the best network architectures in terms of 
trade-off between RUL prediction error and number of trainable parameters, the latter being correlated with computational 
effort. In our experiments, we test our methods on a widely used benchmark dataset, the C-MAPSS, on which we search 
such trade-off solutions. Compared to other methods based on BPNNs, our methods outperform a MLP and show a similar 
level of performance to a CNN in terms of prediction error, while using a much smaller (up to two orders of magnitude) 
number of trainable parameters.

Keywords Evolutionary algorithm · Multi-objective optimization · Extreme learning machine · Remaining useful life · 
C-MAPSS

Introduction

Optimal decision-making for maintenance management is 
related to costs and reliability. Recently, predictions regard-
ing the future state of industrial components have been 
actively used to develop efficient maintenance strategies. In 
particular, predicting the remaining useful life (RUL) plays 
a crucial role in the so-called predictive maintenance (PdM) 
[1]. This technology allows to conduct timely maintenance 
before failures occur, so that industry stakeholders can cut 
their losses caused by any unplanned downtime as well as 
improve the quality of products. A paradigmatic example of 
the importance of PdM is given by the airline industry, in 
which timely maintenance based on the RUL prediction of 
aircraft engines can have a large impact on aircraft opera-
tion, safety, and cost. PdM is thus an essential requirement 
for airlines, to avoid major disasters while minimizing the 
maintenance cost. As such, accurate RUL predictions can 
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be a key solution to accomplish this requirement [2]. The 
existing works for RUL prediction can be mainly catego-
rized into two approaches [3]: physics-based approaches and 
data-driven approaches. While the former require under-
standing the physics underlying degradation, the latter are 
capable of estimating the lifetime of components solely from 
past monitoring data. Today, the tremendous advances in 
machine learning (ML) and the advent of deep learning (DL) 
allow one to recognize complex patterns appearing in the 
data and to learn their relationship with the lifetime of the 
components. Thus, data-driven approaches, especially using 
ML methods, have gained increasing attention. Despite the 
increasing utility of ML-based approaches, physics-based 
approaches are still used especially when collecting moni-
toring or simulated data is difficult [4]. On the other hand, 
data-driven approaches are considered more useful when 
monitoring and/or simulated data are easier to acquire [5]. 
Figure 1 illustrates the flowchart of a data-driven RUL pre-
diction task with a black-box ML model such as an artificial 
neural network (ANN). The sensors installed on a target 
industrial component measure physical properties related to 
the lifetime of the target. The collection of the sensor meas-
urements over time can then be the health monitoring data, 
which typically take the form of multi-variate time-series. 
The following black-box model is responsible for providing 
the RUL prediction as its output from the current sensor 
measurements. The training of the model aims to minimize 
the training error, which is defined as the difference between 
the output and the actual RUL (i.e., the ground truth that is 
assumed to be known for a set of training samples), where 
historical data collected by run-to-failure operations are con-
sidered as the training data. Because the run-to-failure data 
are scarce and the model should perform well with limited 
data, developing an appropriate black-box model is a major 
challenge for the data-driven RUL prediction task. In this 
context, many ML and DL-based methods have been pro-
posed over the past decade.

A multi-layer perceptron (MLP), discussed in [6], is one 
of the earliest works that use the traditional back-propa-
gation neural networks (BPNNs) for RUL prediction. The 
authors also proposed employing a convolutional neural 
network (CNN) for estimating the RUL of aircraft engines. 
Later, a long short-term memory (LSTM) was used in [7] to 
directly recognize temporal patterns in the data instead of 

extracting convolutional features. Another work [8] intro-
duced a stacked sparse autoencoder (SAE) and optimized 
its hyperparameters with a grid search. Focusing on the 
objective of minimizing the prediction error, the DL archi-
tectures for RUL prediction have become more and more 
complex. The authors of [9] proposed a directed acyclic 
graph (DAG) network that combines an LSTM with a CNN 
by placing them in parallel to improve the accuracy of the 
RUL prediction. A serial combination of an LSTM and a 
CNN was introduced in [10], where the LSTM is used to 
extract temporal features, while the CNN is used as a spa-
tial feature extractor. The authors of [11] employed a multi-
head CNN-LSTM combining a parallel branch of CNNs in 
series with an LSTM, and optimized its architecture based 
on evolutionary algorithm (EA). More recently, a combina-
tion of a convolutional autoencoder (CAE) with an LSTM 
has been proposed [12]. The authors of [13] presented an 
autoencoder-based deep belief network (AE-DBN) model 
to obtain accurate RUL predictions, in which, while the AE 
is used for extracting features, the DBN learns long-term 
dependencies. Most of the solutions presented so far are too 
focused on minimizing the RUL prediction error, which is 
typically achieved using deeper and more complex DL archi-
tectures. However, in practice, the recent DL models that 
place an overemphasis on prediction accuracy may not be 
affordable in industrial contexts that normally seek to save 
cost by minimizing access to expensive computing infra-
structures. To be more specific, the recent DL architectures 
consist of a huge number of trainable parameters through 
many layers. Training a large number of parameters needs 
multiple iterations of computationally expensive gradient-
based computations, which require having access to pow-
erful hardware, such as a graphics processing unit (GPU). 
Moreover, it may happen that more monitoring data are 
collected after training the network. This requires continu-
ous access to computing resources needed for retraining, 
which, in turn, increases costs. In this paper, we address the 
problem of reducing the computational cost of the model 
used for RUL prediction by employing the extreme learn-
ing machine (ELM) [14]. ELM is a fast learning algorithm 
for single-layer feed-forward neural networks (SL-FFNNs) 
for which learning consists in determining the network out-
put weights by solving a regularized least-squares problem 
on top of a set of randomly initialized input weights. The 

Fig. 1  Flowchart of a data-
driven RUL prediction task
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authors of [14] claim that ELMs provide the best gener-
alization performance at an extremely fast learning speed. 
Moreover, studies in the existing literature have proven that 
the performance of ELMs is comparable, in terms of accu-
racy, to that of BPNNs on various classification tasks [15, 
16]. Considering the advantages of ELMs, here, we develop 
an ELM-based model as an RUL prediction tool providing 
both good prediction accuracy and short learning time given 
by their lower number of trainable parameters, compared to 
BPNNs. This is explicitly beneficial when an RUL predic-
tion model should be trained regularly on newly collected 
data. In this scenario, an ELM-based RUL prediction model 
could be quickly retrained on the up-to-date data even with 
rather constrained hardware resources, while a DL-based 
RUL prediction model would be comparably more costly 
and time-consuming to train, thus being more difficult to 
update frequently. Furthermore, in addition to the vanilla 
ELMs, we also consider a convolutional ELM (CELM) [17], 
which is obtained by combining a set of convolutional layers 
with random filters (whose weights are not updated dur-
ing the feature extraction step) with a fully connected layer 
trained by an ELM. The weights on the nodes between the 
fully connected layer and the output layer are updated using 
the ELM learning scheme. Finally, we optimize the archi-
tecture of both ELMs and CELMs with respect to the two 
conflicting objectives of reducing the RUL prediction error 
while minimizing the number of trainable parameters, so 
as to find the best trade-off solutions in terms of prediction 
error vs. number of trainable parameters. To this end, we use 
a multi-objective optimization (MOO) technique, namely 
the well-known non-dominated sorting genetic algorithm II 
(NSGA-II) [18]. To evaluate the proposed methods, we use 
the commercial modular aero-propulsion system simulation 
(C-MAPSS) dataset provided by NASA [19], which is the 
de facto standard benchmark for RUL prediction. On each of 
its four sub-datasets, we search for optimal ELM and CELM 
trading off the RUL prediction error and the number of train-
able parameters, and compare their performance to BPNNs 
in terms of the two objectives. To summarize, the main con-
tributions of this work can be highlighted as follows:

– We use an MOO algorithm to achieve a successful trade-
off between RUL prediction error and number of train-
able parameters.

– In two out of four sub-datasets, the obtained solutions 
outperform an MLP and a CNN in terms of prediction 
error as well as number or parameters.

– To the best of our knowledge, this is the first use case of 
CELM applied to RUL prediction (and, in particular, on 
the C-MAPSS dataset).

This paper extends our previous work [20] in which, for the 
first time, we tackled the data-driven RUL prediction task by 

means of ELMs optimized by means on evolutionary com-
putation. The additional materials w.r.t. our previous work 
can be outlined as follows: first, we consider the MOO of 
CELMs and employ the optimized CELMs for the RUL pre-
diction task (the section “ Convolutional Extreme Learning 
Machine); second, both the ELMs and CELMs are evaluated 
on the very widely used C-MAPSS dataset and, in doing so, 
we compare our experimental results to the numerical results 
reported in the literature presenting different methods (the sec-
tion “Experimental Results”). The rest of the paper is organ-
ized as follows: in the section “Background”, the background 
concepts on vanilla ELMs and CELMs are introduced. The 
specifications of the parameters to be optimized and the opti-
mization algorithm are presented in Section “Methods”. Then, 
the experimental setups considered in our work are outlined in 
the Section “Experimental Setup”. The section “Experimental 
Results” presents the experimental results and their analysis. 
Finally, the Section “Conclusions discusses the conclusions 
of this work.

Background

ELM is a fast learning scheme for SL-FFNNs. While training 
typical BPNNs is a time-consuming process, ELM can in fact 
train the networks very quickly by analytically determining the 
output weights after randomly initializing the input weights 
[14]. In this section, we explain the basic principles of the fast 
learning algorithm for SL-FFNNs, and describe the CELM 
model, which is an extension of this ELM learning scheme 
to CNNs.

Extreme Learning Machine

When the output of SL-FFNNs can be represented as a linear 
system, training an ELM consists in finding the smallest norm 
least-squares solution of that linear system by computing the 
Moore–Penrose inverse. The idea behind the ELM model is 
that in FFNNs the input weights may not need to be adjusted 
at all [21, 22]. For training an SL-FFNN comprising L hid-
den neurons with N labeled training samples, an ELM can be 
formally described as follows. Each training sample is made 
up of a d-dimensional input vector with a corresponding 
c-dimensional label. Then, a given set of N training samples 
is written as (xi, ti) , i ∈ [1,N] with xi ∈ IRd and ti ∈ IRc , where 
xi and ti denote each input vector and its corresponding label 
respectively. Since the RUL prediction problem is a regression 
task, in our case, the label is a scalar real number, i.e., c = 1.

Figure 2 visualizes an SL-FFNN and the notation used 
for describing the ELM model. As shown in the figure, the 
SL-FFNN used in this work consists of d input nodes, a sin-
gle output node, and a single hidden layer of L neurons with 
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activation function g(⋅) . For a given input sample xi , the output 
of a SL-FFNN oi is defined by

where wj = [w1j,… ,wdj] is a vector of weights associated 
to the connections between the d input neurons (which are 
assumed to be linear) and the jth hidden neuron, �j is the 
weight on the connection between the jth hidden neuron and 
the output neuron, and bj denotes the bias for the jth hid-
den neuron. The N equations computing the output for each 
training sample x1,… , xN can be written compactly as

where H is the hidden layer output matrix (of size N × L ), 
and � (of size L × 1 ) consists of the weights of all the con-
nections between the hidden neurons and the output neuron. 
Let T = [t

1
,… , t

N
]⊤ be the target values, i.e., the labels for 

the N training samples. Then, the training of the SL-FFNN 
can be defined as minimizing the error between the network 
outputs and the target values. This is equivalent to find a 
least-squares solution �̂ to the linear system H ⋅ � = T . 
Thus, the training procedure can be mathematically formu-
lated as

The weight vector minimizing the error �̂ is the smallest 
norm least-squares solution of the above equation

(1)oi =

L∑
j=1

�jg
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wj ⋅ xi + bj

)
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(3)
���H�̂ − T

��� = min
�

‖H.� − T‖.

where H† denotes the Moore–Penrose generalized inverse of 
the matrix H . The inverse matrix is defined as (H⊤

H)−1H⊤ . 
To prevent the inverse term H⊤

H from becoming singular, 
an L2 regularization term �I can be added. As such, H† with 
the regularization term can be written as

where � ∈ IR is an arbitrarily small value. Overall, the ELM 
training algorithm for SL-FFNNs, which consists in finding 
a solution to Eq. (3), is defined by

Compared to BPNNs, the ELM training specified in Eq. 
(6) not only achieves significantly faster training speed, but 
also provides comparable performance in terms of prediction 
accuracy [16, 23]. Moreover, it has been shown that the gen-
eralization performance of ELMS is in general better than 
that provided by BP training algorithms [24, 25]. According 
to Eq. (6), the computational complexity of the ELM train-
ing algorithm is determined by the size of the matrix H : 
more specifically, it is O(NL2 + L3) . Namely, the complexity 
is cubic w.r.t. the number of trainable parameters, which is 
the same as L. The empiric characterization of the training 
time w.r.t. L is shown in Fig. 3.

When we design an ELM with an SL-FFNN, increasing 
the number of hidden neurons L can contribute to decreas-
ing the prediction error, but the computational complexity 
(hence the training time) increases. Thus, finding the opti-
mal value of L as well as the other parameters of an ELM 
is a crucial element affecting the prediction error. In this 
paper, we use evolutionary search to explore this parameter 
space, so that we obtain the solutions resulting in a trade-off 
between the prediction error and the number of trainable 
parameters.

(4)�̂ = H
†
T,

(5)H
† =

(
H

⊤
H + 𝛼I

)−1
H

⊤,

(6)�̂ = (H⊤
H + 𝛼I)−1H⊤

T.

Fig. 2  Illustration of the ELM model based on an SL-FFNN

Fig. 3  Correlation between the number of trainable parameters and 
the training time of the ELM models. The best-fit curve shows a 
super-quadratic dependency between the training time and the num-
ber of trainable parameters, in line with the cubic complexity derived 
analytically, O(NL2 + L

3)
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Convolutional Extreme Learning Machine

CNNs are a kind of multi-layer FFNNs that were first estab-
lished by LeCun et al. [26] and applied to the classification 
task of two-dimensional (2D) images of handwritten digits. 
After years of research, CNNs have provided outstanding 
performances on several computer vision tasks [27, 28], 
and they have also achieved excellent results on regression 
tasks on one-dimensional (1D) time-series, based on convo-
lutions with 1D filters [29, 30]. Figure 4 describes a CNN 
structure for a regression task, such as the RUL prediction, 
on multi-variate time-series. The network mainly comprises 
the feature extraction stage and the regression stage. The 
feature extraction stage includes a set of 1D convolutional 
layers aiming to extract high-level feature representations, 
while the following regression stage is a fully connected 
layer computing an output RUL value from the extracted 
features. BP algorithms are extensively used to train CNNs, 
but gradient-based learning algorithms are in general slower 
than required, because they tune all the parameters of the 
network iteratively. Considering that the slow speed of BP 
algorithms can be a major bottleneck in the applications of 
CNNs, here, we apply CELMs, which are fast training as 
they do not require an iterative gradient computation. Simi-
lar to the ELM model, based on an SL-FFNN, the training 
of CELMs consists in analytically determining the output 
weights on the connections between the hidden neurons of 
the fully connected layer and the output neuron, in conjunc-
tion with random initialization of all the remaining weights. 
In other words, the convolutional filters are randomly gener-
ated, and we randomly choose the input weights to the fully 
connected layer, as well. Thus, a major difference between 
the ELM and the CELM models considered in our work is 
the presence of the feature extraction step using the random 
filters.1

Methods

We present now the details of the proposed methods: the sec-
tion “Individual Encoding” describes the individual encod-
ing. In the section “Individual Encoding”, the evolutionary 
algorithm used for the MOO process is outlined.

Individual Encoding

Following what we have seen in the section  “Extreme 
Learning Machine”, both the RUL prediction error and the 
computational complexity (which correlates to the training 
time) are largely affected by the number of hidden neurons 
L. Furthermore, the performance of the ELMs varies with 
the choice of the activation function g(⋅) used in the hidden 
neurons. Here, we consider two widely used activation func-
tions, namely the hyperbolic tangent tanh and the sigmoid 
sigm, as our g(⋅) for the ELMs. In addition, the L2 regulari-
zation parameter � described in the section “Background” 
is also optimized by the evolutionary algorithm. Based on 
the above discussion, we optimize the following integer 
parameters:

– ntanh , number of hidden neurons with hyperbolic tangent 
activation;

– nsigm , number of hidden neurons with sigmoid activation;
– r, L2 regularization parameter.

Hence, a genotype consists of three parameters: ntanh , nsigm , 
and r.

The lower and upper bounds (chosen empirically) for 
each parameter in the ELMs are set, as shown in Table 1. 
Regarding the parameters for the number of hidden neurons, 

Fig. 4  Illustration of the CELM 
model based on CNNs

Table 1  Bounds of the 
parameters of the ELMs

Parameter Min Max

ntanh 1 200
nsigm 1 200
r 2 6

1 We should note that, strictly speaking, “ELM” refers to the learning 
algorithm only. However, in the rest of this paper, both “ELM” and 
“CELM” will be generically used to refer to both the learning algo-
rithm and the neural network itself.
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these are multiplied by a fixed value of 10 when we gener-
ate an ELM instance (i.e., the phenotype), so that we use a 
discretization on the number of hidden nodes to reduce the 
search space yet allowing ELMs of up to 2000 tanh hidden 
neurons and 2000 sigmoid hidden neurons. In other words, 
both ntanh and nsigm range in the interval [1, 200], while the 
corresponding number of hidden neurons can range between 
10 and 2000 with a step size of 10. These values have been 
chosen empirically. In particular, the maximum value for L 
(given by the sum of the two kinds of neurons) is 4, 000, and 
this upper bound is determined to limit the size of the hidden 
layer output matrix H , which is N × L , while keeping its cal-
culation affordable during the evolutionary search. Because 
the whole range of integers between 1 and 2000 would be 
too large to explore, we divide it by 10, to decrease the num-
ber of possible combinations for those two parameters: by 
doing so, we reduce the number of possible combinations 
from 4 × 106 to 4 × 104 . The remaining parameter, r, refers 
to the order of magnitude of the L2 regularization param-
eter � described in the section “Background”, i.e., � = 10−r . 
This value should be relatively small to avoid affecting the 
ELM performance, but large enough to prevent the inverse 
term in Eq. (4) from becoming singular; we find that such 
a lower and an upper bound correspond to � = 10−2 and 
� = 10−6 , respectively. The above ELM optimization has two 
major limitations: (1) there are only few parameters deter-
mining the network performance; and (2) we noted that the 
ELMs tend to converge to a certain value of L, above which 
the performance does not make any meaningful improve-
ment (this latter aspect will be further discussed in the sec-
tion “Experimental Setup”). On the other hand, the CELM 
model involves many more hyperparameters that can largely 
affect both the prediction error and the total number of train-
able parameters in the network. In fact, the performance of 
the ELMs relies on the configuration of the fully connected 
layer, whereas the performance of the CELMs is determined 
not only by the fully connected layer, but also by the archi-
tecture of the preceding convolutional layers. Regarding the 
optimization of the CELM model shown in Fig. 4, we con-
sider the following architecture parameters:

– ch1 , number of filters in the first convolution layer;
– k1 , length of each filter of ch1;
– ch2 , number of filters in the second convolution layer;
– k2 , length of each filter of ch2;
– ch3 , number of filters in the third convolution layer;
– k3 , length of each filter of ch3;
– L, number of hidden neurons in the fully connected layer.

Considering that also, in the CELM case, the architec-
ture parameters are all integers, the genotype consists in this 
case of seven integer values. The first six are reserved for 

constructing the three convolutional layers, while the num-
ber of hidden neurons in the following fully connected layer 
is determined by the remaining integer value L. Because a 
good performance of the CELMs with stacked convolutional 
layers (in particular three) has been proved in previous works 
[31, 32], we fix the number of the convolutional layers to 
three. Instead, the parameters regarding the filters in each 
convolutional layer are encoded, so that each individual 
generated during the evolutionary search extracts different 
convolutional features. It should be noted that the param-
eters regarding the number of filters are multiplied by a 
fixed value of 10 when we generate the phenotype, while the 
parameters regarding the filter lengths are used as they are. 
The bounds (chosen empirically) for the seven parameters of 
the CELMs are shown in Table 2. Since we set the maximum 
value of L is 4, 000 for the ELMs, the same upper bound is 
considered also for the CELMs to conduct a fair comparison 
between the two models. As shown in Table 2, the bounds 
of the parameter regarding the number of hidden neurons 
L are set to [1, 80]; however, this integer is multiplied by a 
fixed value of 50 when each genotype is translated into cor-
responding phenotype. As explained in the case of the ELM 
optimization, the multiplicand is used to decrease the pos-
sible number of combinations determined by the bounds of 
the parameters: thanks to this discretization, we reduce the 
number of possible combinations in the search space from 
2.56 × 1014 to 5 × 109 . Concerning the activation function, 
we use the sigmoid function for all the nodes in the fully 
connect layer of the CELMs. This choice follows the exist-
ing works on CELMs [31, 33, 34], that all make use of the 
sigmoid function in the fully connected layer, and the recent 
study [34], where the authors tested different widely used 
activation functions, including the sigmoid and the hyper-
bolic tangent, and verified that the sigmoid can achieve the 
best prediction accuracy.

Optimization Algorithm

To optimize the parameters of the ELMs and CELMs described 
in the section “Individual Encoding”, we consider an MOO 
approach looking for the best trade-off solutions in terms of 
RUL prediction error vs. number of trainable parameters. In the 

Table 2  Bounds of the 
parameters of the CELMs

Parameter Min Max

ch
1

1 20
k
1

1 20
ch

2
1 20

k
2

1 20
ch

3
1 20

k
3

1 20
L 1 80
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evaluation step of our evolutionary search, the fitness of each 
individual is calculated by generating the phenotype, an ELM 
or a CELM, respectively, associated with the corresponding 
genotype, which is a vector containing the parameters (three 
or seven, respectively, for the case of ELMs and CELMs), as 
explained in the previous section. Given that the benchmark 
dataset on which we evaluate our methods consists of a train-
ing set Dtrain and a test set Dtest , the training set Dtrain is further 
divided into training purpose data, Etrain , and validation pur-
pose data, Eval (i.e., Dtrain = Etrain ∪ Eval ). Hence, any individ-
ual appearing during the evolutionary search is first trained on 
Etrain , and then, its fitness is calculated using Eval . More specifi-
cally, MOO is achieved using a very well-known evolutionary 
algorithm, NSGA-II [18]. At the beginning of the evolutionary 
run, a population of npop individuals is initialized at random. 
In the main loop of the algorithm, following the initial gen-
eration, an offspring population of equal size npop is generated 
by tournament selection, crossover, and mutation. The tourna-
ment selection primarily checks the dominance level of each 
individual in the population. The secondary criteria, crowding 
distance, are then used to promote individuals that lie in less 
crowded areas of the Pareto front. Regarding the crossover and 
the mutation, we consider one-point crossover, with crossover 
probability pcx set to 0.5, and uniform mutation, with mutation 
probability pmut set to 0.5. The probabilities have been chosen, 
such that, in most cases, individuals are produced by either 
mutation or crossover (exclusively), so as to avoid disruptive 
effects due to the combination of mutation and crossover that 
may lead to bad individuals. The new individuals generated 
by the above genetic operators are then put together with the 
parents. The combined population of the parents and the off-
spring is then sorted according to non-domination. Finally, the 
best non-dominated sets are inserted into the new population 
until no more sets can be taken. For the next non-dominated set, 
which would make the size of the new population larger than 
the fixed population size npop , only the individuals that have the 
largest crowding distance values are inserted into the remain-
ing slots in the new population. After that, the next generation 
starts. This loop is terminated after a fixed number of genera-
tions ngen , and the evolutionary algorithm returns the solutions 
on the Pareto front. npop and ngen are set both to 20. We have 
empirically found that these values allow enough evaluations to 
observe an improvement w.r.t. the hypervolume (HV) spanned 
by the solutions on a Pareto front. We refer to this method 
based on NSGA-II based for ELM as MOO-ELM. Similarly, 
the method for the CELM is referred to as MOO-CELM.

Experimental Setup

The details of our experimentation for evaluating the 
proposed methods are presented in this section: first, we 
describe the C-MAPSS dataset in the section “Benchmark 

Dataset” and the evaluation metrics in the section “Evalua-
tion Metrics”. In the section “Back-Propagation Neural Net-
works (BPNNs)”, we describe the BPNNs that are used for 
the comparison with our methods. Then, the computational 
setup and the data preparation steps are outlined in the sec-
tion “Computational Setup and Data Preparation”.

Benchmark Dataset

As discussed in the section “Introduction”, aircraft engine 
maintenance can have a significant impact on the total cost 
of operation in the aviation industry, and data-driven RUL 
prediction methods make possible to optimize maintenance. 
However, large representative run-to-failure data for devel-
oping the data-driven methods are unavailable in real opera-
tions, because failures during flight should not obviously 
occur in such safety-critical systems. To overcome this chal-
lenge, NASA introduced the C-MAPSS dataset, which con-
sists of run-to-failure trajectories simulated by C-MAPSS. 
The C-MAPSS is a tool for simulating a realistic large com-
mercial turbofan engine, as depicted in Fig. 5, which allows 
input variations of health-related parameters and recording 
of the resulting output sensor measurements. More spe-
cifically, the C-MAPSS simulator produces various sensor 
response surfaces as its outputs, based on a set of health-
parameter inputs. This enables users to simulate the effects 
of faults in a set of rotating components which are crucial 
components associated with the engine’s failure [19]: fan, 
low-pressure compressor (LPC), high-pressure compressor 
(HPC), high-pressure turbine (HPT), and low-pressure tur-
bine (LPT). The outputs produced by the C-MAPSS simula-
tion are used as input data for our experiments.

The C-MAPSS dataset contains trajectories from 21 dif-
ferent sensor measurements, generated under four differ-
ent simulation settings. As outlined in Table 3, the dataset 

Fig. 5  Simplified diagram of the turbofan engine simulated in 
C-MAPSS [35]
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consists of four sub-datasets: FD001, FD002, FD003, and 
FD004, according to the operating states and fault mode. 
Each sub-dataset is split into a training set Dtrain and a test 
set Dtest . The training set of each sub-dataset is made up of 
run-to-failure histories of different engines. In contrast, the 
simulation of each test engine is terminated before its fail-
ure, so that the RUL of each engine in the test set is required 
to be predicted for evaluating the prediction performance. 
One additional note is that the data of each engine consist 
of 21 multi-variate time-series, but 7 time-series that do not 
show changes over time are discarded. Thus, we use only 14 
time-series as inputs. All the sensor readings and the RUL 
prediction are updated at the same frequency; the time unit 
for both the RUL prediction and the sensor measurements 
is referred to as cycle.

Evaluation Metrics

We evaluate our methods in terms of number of train-
able parameters and prediction error. While, for the for-
mer, we merely count this number directly, the predic-
tion error is quantified w.r.t. two metrics, namely the 
RMSE and the s-score [19], which are defined as follows. 
Let the error between the predicted and target RUL be 
di = RUL

predicted

i
− RUL

target

i
 . The RMSE on Dtest is defined as

where N is the total number of test samples in Dtest . The 
s-score metric is also based on the error di , but it differ-
entiates between “optimistic” and “pessimistic” predictions 
using an asymmetric function. Specifically, it assigns a 
larger value to optimistic RUL predictions w.r.t. pessimistic 
RUL ones. This reflects the risk of predicting an RUL value 
higher than the real one. As such, the s-score is formulated 
as follows:

(7)RMSE =

√√√√ 1

N

N∑
i=1

d2
i
,

It should be noted that we use the s-score solely for evalu-
ating the methods on the test set; on the other hand, we 
perform the evolutionary optimization on the RMSE, since 
it provides more information from an optimization point of 
view w.r.t. the s-score. In fact, based on our previous work 
[36], networks optimized using the RMSE as fitness function 
provide better results in terms of both metrics, compared to 
networks optimized based on the s-score.

Back‑Propagation Neural Networks (BPNNs)

As we discussed in the section  “Introduction”, data-
driven methods such as traditional neural networks have 
been widely used in the field of RUL prediction. In par-
ticular, we consider for comparison three recent models 
introduced in [6] and [7], all based on BPNNs. For the 
evaluation purposes, these models are trained on Dtrain and 
their performance is evaluated by calculating the RMSE 
and the s-score on Dtest . We specify the details of these 
compared methods in the following. The first two BPNNs 
are two FFNNs proposed in [6]: an MLP and a CNN. The 
architecture of the MLP comprises one hidden layer of 50 
neurons. Regarding the CNN, the model consists of two 
pairs of convolutional layers and pooling layers, followed 
by a fully connected layer. The first convolutional layer 
has 8 filters of size 12, while the following convolutional 
layer contains 14 filters of size 4. Each pooling layer per-
forms average pooling with size 1 × 2 to halve the feature 
length. The feature map is flattened at the end of the last 
pooling layer and passed to the fully connected layer of 
50 neurons. Both the MLP and the CNN use a sigmoid as 
activation function. The third BPNN is an LSTM network 
introduced in [7]. The LSTM has four hidden layers: two 
stacked LSTM layers and two fully connected layers. The 
number of hidden units in each LSTM is 32, and the fol-
lowing two fully connected layers contain 8 neurons in 

(8)s-score =

N∑
i=1

SFi, SF =

{
e
−

di

13 − 1, di < 0

e
di

10 − 1, di ≥ 0
.

Table 3  C-MAPSS dataset overview

Sub-dataset FD001 FD002 FD003 FD004

Number of engines in train-
ing set

100 260 100 249

Number of engines in test set 100 259 100 248
Max/min cycles in training 

set
362/128 378/128 525/145 543/128

Max/min cycles in test set 303/31 367/21 475/38 486/19
Operating conditions 1 6 1 6
Fault modes 1 1 2 2

Table 4  Compared RUL prediction methods for the C-MAPSS data-
set

Method Description

MLP [6] 1 hidden layer
CNN [6] 2 convolutional layers, 2 pooling layers, 

and 1 fully connected layer
LSTM [7] 2 LSTM layers and 2 fully connected layer
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each layer. For all the BPNNs, the architecture is followed 
by a single output node. The architecture of the compared 
algorithms is summarized in Table 4. Regarding the train-
ing setup for the specified BPNNs, we followed the setup 
used in the papers introducing them. In particular, we used 
the RMSprop optimizer with a leaning rate 0.001 and set a 
mini-batch size to 512.

Computational Setup and Data Preparation

All the neural networks considered in our experimentation, 
including the proposed ELMs and CELMs, are implemented 
in Python. In particular, TensorFlow 2.3 is used to build the 
BPNNs described in the section “Back-Propagation Neural 
Networks (BPNNs)”. To implement the ELMs, we use the 
high-performance toolbox for ELM (HP-ELM)2 that sup-
ports GPU computation. The CELMs are implemented in 
PyTorch. All the experiments have been conducted on a 
workstation with an NVIDIA TITAN Xp GPU. The evolu-
tionary optimization algorithm introduced in section “Indi-
vidual Encoding” is implemented using the DEAP library.3 
Since we employ neural networks, each time-series is nor-
malized in the range [−1, 1] by min–max normalization. The 
methods employing an FFNN, i.e., the MLP and the ELM, 
take a 14-dimensional vector as an input for each times-
tamp. On the other hand, the networks that have a feature 
extraction step, i.e., the CNN, the LSTM and the CELM, 
require time-windowed data as input. To prepare the input 
for those networks, we apply a fixed-length time window 
with stride 1. For each sub-dataset, the length of the time 
window is the same as the minimum number of cycles in 
the test set, as described in Table 3. Finally, we split Dtrain 
in Etrain and Eval : specifically, we randomly choose 80% of 
the data in Dtrain and assign them to Etrain , used for training 
each individual. The remaining 20% are designated as Eval 
for the fitness evaluation.

Experimental Results

The aim of our experiments is to evaluate the optimized 
ELMs and CELMs discovered by the proposed methods, 
MOO-ELM and MOO-CELM. To perform a thorough eval-
uation, we compare them with the BPNNs described in the 
section “Back-Propagation Neural Networks (BPNNs)” not 
only in terms of number of trainable parameters, but also 
in terms of RUL prediction error, the latter being based on 
the two metrics defined in the section “Evaluation Metrics”. 
For each parameter space (i.e., for the ELMs and CELMs) 

and each of the four C-MAPSS sub-datasets, we execute 
10 independent runs of the MOO algorithm with different 
random seeds. The multiple runs are considered to enhance 
the reliability of the results obtained by the proposed meth-
ods based on NSGA-II. The convergence of each MOO run 
is analyzed by collecting the HV across 20 generations. 
After collecting the HV values, we normalize them to [0, 1] 
by min–max normalization, i.e., the maximum HV value 
is set to 1, while the minimum one is set to 0. As shown 
in Figs. 6 and 7, in all cases, the mean HV monotonically 
increases across the generations. This indicates that the used 
evolutionary search keeps successfully finding better non-
dominated solutions across the generations. In addition to 
this gradual improvement, the slope of the mean HV and 
its standard deviation reveal convergence at the end of the 
generations. This implies that the algorithm explores the 
search space enough within 20 generations, regardless of 
which initial population it starts with.

When we consider the 10 independent runs for each set-
ting, each run of the evolutionary search returns multiple 
solutions on the final Pareto front. Because NSGA-II tends 
to find “isolated” solutions considering how close the non-
dominated solutions are to each other (due to the crowding 
distance sorting), the solutions widely spread across the two 
conflicting objectives. In practical applications, one should 
select from the Pareto front the solutions of interest based on 
domain knowledge or any other particular preference crite-
ria. Here, to perform a comparative analysis with the other 
methods, we take a subset of the solutions by aggregating the 
10 independent runs in the following way: first, we collect 
all the non-dominated solutions across the 10 runs. Then, we 
select a fraction of the solutions based on their density in the 
fitness space, as described in Figs. 8 and 9. When we do not 
have any preference for a particular objective, this strategy 
can be used to derive a subset of the solutions implicitly 
“preferred” by the MOO algorithm. As shown in the figures, 
we first place all the solutions from the 10 runs in the fitness 
space, which is discretized in equally spaced bins. The den-
sity of the solutions can then be measured by counting the 
number of solutions lying in each bin. As a result, we take 
the solutions from the bin with the highest density.

Based on this selection procedure, MOO-ELM finds 15, 
31, 20, and 30 solutions on the four sub-datasets, respec-
tively. In case of MOO-CELM, the numbers of selected solu-
tions are 6, 4, 6, and 4. In each experiment, we calculate the 
test RMSE, the s-score, and the number of trainable param-
eters, for each of the available solutions. Their averages are 
then computed as the final results. For instance, the result 
of MOO-ELM on the FD001 can be derived as follows: the 
selected solutions are represented as 15 dots in the yellow-
colored bin of Fig. 8a. For each dot, we train the correspond-
ing ELM on Dtrain and calculate the test RMSE, the s-score 
on Dtest , and the number of trainable parameters. After 

2 https:// github. com/ akusok/ hpelm.
3 https:// github. com/ DEAP/ deap.

https://github.com/akusok/hpelm
https://github.com/DEAP/deap
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collecting these three values for the 15 solutions, we use the 
average test RMSE, the average test s-score, and the average 
number of trainable parameters to compare the proposed 
MOO-ELM with the other methods. The comparative results 
of all the considered methods are presented in Tables 5 and 
6. In terms of test RMSE (Table 5), our methods are much 
better than the MLP, since we can obtain lower RMSE val-
ues with a smaller number of trainable parameters. Although 
both the proposed methods and the MLP use hundreds of 
parameters, our methods are considerably better in terms of 
computational cost and training time, because we apply an 
extremely fast ELM learning algorithm, while the MLP is 
trained by BP, which is relatively slow and expensive. The 
CNN has an even larger number of trainable parameters and 
achieves a much better test RMSE, compared to the MLP. 
Nevertheless, the test results of the proposed methods are 
still fairly comparable to those obtained by the CNN in terms 

of test RMSE, while our methods achieve these results using 
a much smaller number of trainable parameters. In particu-
lar, in terms of test RMSE, the results of MOO-ELM are 
slightly worse but very close to the results of the CNN for 
all four sub-datasets. MOO-CELM outperforms the CNN in 
terms of test RMSE on FD001 and FD003, but it does not 
provide as good results on the remaining sub-datasets. This 
implies that MOO-ELM can achieve a sufficient and stable 
performance on all the datasets including FD002 and FD004 
that contain the data of six working conditions, while MOO-
CELM is only advantageous for the RUL prediction task on 
less-complicated datasets such as FD001 and FD003 col-
lected under only one condition. Additionally, we compare 
our results to the LSTM; as shown in Table 5, it is the best 
method in terms of test RMSE, but the number of trainable 
parameters in the LSTM is more than two orders of mag-
nitude larger. In fact, the solutions given by MOO-CELM 

)b()a(

1dcnn

)d()c(

Fig. 6  Normalized hypervolume across generations (mean ± std. dev. across 10 independent runs) for the proposed MOO-ELM approach on the 
four sub-datasets, respectively: a FD001 dataset; b FD002 dataset; c FD003 dataset; d FD004 dataset
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not only have a clear advantage in terms of number of train-
able parameters but also can produce low prediction errors 
(comparable to those achieved by the LSTM) on the two 
less challenging datasets. Most of this analysis on the test 
RMSE is also valid for the s-score results summarized in 
Table 5. When we look at the score values in this table, those 
given by MOO-ELM are close to the results of the CNN. 
Moreover, MOO-CELM achieves the best score among the 
compared methods on FD003, as well as a good score (close 
to the score of the LSTM) on FD001.

Finally, the comparative results are visualized in 
Fig. 10, which easily allows to compare the performance 
of the different methods in terms of trade-off between 
the two conflicting objectives; due to the fact that the 
analysis of the score results is not much different from 
that carried out on the RMSE results, in the figure, we 
only illustrate the results w.r.t. the test RMSE, previ-
ously reported in Table 5. We can observe that none of 

the BPNNs dominates the others. Among the BPNNs, 
the MLP uses a lower number of trainable parameters, 
while the LSTM offers the best performance in terms of 
test RMSE. The CNN is placed between the MLP and the 
LSTM for both objectives. Note that the impact of the ran-
dom initialization of the weights in NNs is not examined 
in our experiments (i.e., we assume that each architecture 
yields deterministic performance after its training), while 
we take into account 10 different random seeds for our 
evolutionary search. Each run of the GA with a different 
random seed produces indeed a different set of solutions. 
Therefore, having multiple runs of the proposed evolution-
ary algorithm allows us to verify its robustness over dif-
ferent random seeds. When we compare the two proposed 
methods with each other, adding convolutional layers with 
random filters to the SL-FFNN (i.e., using MOO-CELM 
instead of MOO-ELM) improves the RUL prediction for 
less-complicated data, as shown in Fig. 10a, c, although 

)b()a(

)d()c(

Fig. 7  Normalized hypervolume across generations (mean ± std. dev. across 10 independent runs) for the proposed MOO-CELM approach on 
the four sub-datasets, respectively: a FD001 dataset; b FD002 dataset; c FD003 dataset; d FD004 dataset
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the number of trainable parameters slightly increases. In 
contrast, we find that introducing randomly generated con-
volutional filters can disturb the RUL prediction made by 
the ELMs on FD002 and FD004. The proposed methods, 
MOO-ELM and MOO-CELM, dominate the MLP for all 
the datasets except for FD004. In Fig. 10d, the number 
of trainable parameters of MOO-CELM is slightly larger 
than that of the MLP, but our method is still better in terms 
of computational cost, because it uses ELM, which is a 
much more efficient training algorithm compared to BP. 

In two out of four datasets (FD001 and FD003), the solu-
tions discovered by MOO-CELM dominate the CNN. The 
results given by MOO-ELM show a comparable prediction 
performance while using a significantly lower number of 
trainable parameters, compared to the CNN. Although our 
proposed methods cannot outperform the LSTM in terms 
of test RMSE, they still can be good RUL prediction tools 
considering the much smaller number of trainable param-
eters and the advantages of the ELM training.

Fig. 8  Trade-off between validation RMSE and number of train-
able parameters at the last generation for the 10 independent runs of 
the proposed MOO-ELM approach (aggregate results across runs). 
For further analysis, the fitness space is discretized in 20 × 20 bins. 

The bin highlighted in yellow corresponds to the one with the high-
est density of solutions: a FD001 dataset; b FD002 dataset; c FD003 
dataset; d FD004 dataset
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Conclusions

In this paper, we applied evolutionary computation to 
explore the parameter space of two different kinds of FFNNs 
trained with ELM. Our goal was to find a proper data-driven 
RUL prediction tool for industrial applications that implic-
itly require a good trade-off between prediction error and 
number of trainable parameters. To achieve this goal by 

automatically designing ELMs and CELMs, we used an 
MOO evolutionary algorithm, namely NSGA-II. The results 
obtained by the proposed methods were compared to those 
given by three BPNNs, namely an MLP, a CNN, and an 
LSTM network. The comparative evaluation was based on 
the C-MAPSS dataset, which is the de facto standard bench-
mark in the area of RUL prediction. We verified that the 
solutions discovered by our methods are clearly better than 

Fig. 9  Trade-off between validation RMSE and number of trainable 
parameters at the last generation for the 10 independent runs of the 
proposed MOO-CELM approach (aggregate results across runs). 
For further analysis, the fitness space is discretized in 20 × 20 bins. 

The bin highlighted in yellow corresponds to the one with the high-
est density of solutions: a FD001 dataset; b FD002 dataset; c FD003 
dataset; d FD004 dataset
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the MLP. We also found that, in terms of test RMSE, MOO-
ELM shows a similar performance w.r.t. the CNN for all the 
four sub-datasets, while MOO-CELM outperforms it on two 
out of four datasets. However, our solutions have smaller 
structures as well as can be trained quickly with ELM. Com-
pared to the LSTM, our solutions perform slightly worse in 
terms of test RMSE, but the number of trainable parameters 
is much smaller, and this, in turn, implies a significantly 
shorter training time, thus a lower computational cost lever-
aging the advantages of ELM. One major limitation of our 
work is that the random filters cannot successfully extract 

convolutional features for ELM training on the more com-
plicated data collected under different operating conditions 
(sub-datasets FD002 and FD0044). In future work, we can 
address this problem by employing predefined filters [37, 
38] that can provide better prediction performance, instead 
of using random filters. Finally, in this work, we consid-
ered merely two different activation functions in neurons, 
but many other functions [39], such as rectified linear unit 
(ReLU) and leaky ReLU, can be used. Thus, one possible 
future direction would be to consider those additional func-
tions when we define the search space.

Table 5  Summary of the 
comparative analysis based on 
the test results on C-MAPSS in 
terms of test RMSE and number 
of trainable parameters

For our methods, we report the values in terms of mean ± std. dev. across 10 independent runs. Note that 
the std. dev. of the trainable parameters is neglected, because it is relatively small. For the remaining meth-
ods, we report only one solution related to one single run (since their computations are deterministic)
The boldface indicates the best value per column

Method RMSE Trainable 
param-
eters

FD001 FD002 FD003 FD004

MLP [6] 37.36±0.00 80.03±0.00 37.39±0.00 77.37±0.00 801
CNN [6] 18.45±0.00 30.29±0.00 19.82±0.00 29.16±0.00 6,815
LSTM [7] 16.14±0.00 24.49±0.00 16.18±0.00 28.17±0.00 14,681
MOO-ELM 18.93±0.19 30.46±0.12 20.56±0.15 31.70±0.19 326
MOO-CELM 16.54±0.57 39.98±0.35 17.97±0.80 42.62±0.78 751

Table 6  Summary of the 
comparative analysis based on 
the test results on C-MAPSS in 
terms of s-score and number of 
trainable parameters

For our methods, we report the values in terms of mean ± std. dev. across 10 independent runs. Note that 
the std. dev. of the trainable parameters is neglected, because it is relatively small. For the remaining meth-
ods, we report only one solution related to one single run (since their computations are deterministic)
The boldface indicates the best value per column

Method s-score × (103) Trainable 
param-
eters

FD001 FD002 FD003 FD004

MLP [6] 18.00±0.00 7800.00±0.00 17.40±0.00 5620.00±0.00 801
CNN [6] 1.29±0.00 13.60±0.00 1.60±0.00 7.89±0.00 6,815
LSTM [7] 0.34±0.00 4.45±0.00 0.85±0.00 5.55±0.00 14,681
MOO-ELM 1.12±0.08 14.31±0.41 2.12±0.16 10.63±0.19 326
MOO-CELM 0.46±0.07 64.62±1.90 0.64±0.15 47.12±0.98 751
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deterministic): a FD001 dataset; b FD002 dataset; c FD003 dataset; 
d FD004 dataset
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