This paper deals with the singular Liouville equation −Δgu=ρ(h(x)e2u∫Σh(x)e2udVg − 1)−2π∑j=1mαj(δpj−1)(E) stated on a compact orientable Riemannian surface (Σ,g) with no boundary and Volg(Σ)=1. Here, ρ is a real parameter, α––=(α1,…,αm)∈(−1,0)m and the corresponding space of formal barycenters is defined as Σρ,α––=⎧⎩⎨∑qj∈Jtjδqj:J is finite, ∑qj∈Jtj=1, tj≥0, qj∈Σ,4πχ(J)

On the solvability of singular Liouville equations on compact surfaces of arbitrary genus / Carlotto, Alessandro. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9947. - 366:3(2014), pp. 1237-1256. [10.1090/s0002-9947-2013-05847-3]

On the solvability of singular Liouville equations on compact surfaces of arbitrary genus

Alessandro Carlotto
2014-01-01

Abstract

This paper deals with the singular Liouville equation −Δgu=ρ(h(x)e2u∫Σh(x)e2udVg − 1)−2π∑j=1mαj(δpj−1)(E) stated on a compact orientable Riemannian surface (Σ,g) with no boundary and Volg(Σ)=1. Here, ρ is a real parameter, α––=(α1,…,αm)∈(−1,0)m and the corresponding space of formal barycenters is defined as Σρ,α––=⎧⎩⎨∑qj∈Jtjδqj:J is finite, ∑qj∈Jtj=1, tj≥0, qj∈Σ,4πχ(J)
2014
3
Carlotto, Alessandro
On the solvability of singular Liouville equations on compact surfaces of arbitrary genus / Carlotto, Alessandro. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9947. - 366:3(2014), pp. 1237-1256. [10.1090/s0002-9947-2013-05847-3]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/378270
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
  • OpenAlex ND
social impact