We show that the Morse index of a closed minimal hypersurface in a four-dimensional Riemannian manifold cannot be bounded in terms of the volume and the topological invariants of the hypersurface itself by presenting a method for constructing Riemannian metrics on S-4 that admit embedded minimal hyperspheres of uniformly bounded volume and arbitrarily large Morse index. The phenomena we exhibit are in striking contrast with the three-dimensional compactness results by Choi-Schoen.

Minimal hyperspheres of arbitrarily large Morse index / Carlotto, A. - In: COMMUNICATIONS IN ANALYSIS AND GEOMETRY. - ISSN 1019-8385. - 27:5(2019), pp. 991-1023. [10.4310/CAG.2019.v27.n5.a1]

Minimal hyperspheres of arbitrarily large Morse index

Carlotto, A
2019-01-01

Abstract

We show that the Morse index of a closed minimal hypersurface in a four-dimensional Riemannian manifold cannot be bounded in terms of the volume and the topological invariants of the hypersurface itself by presenting a method for constructing Riemannian metrics on S-4 that admit embedded minimal hyperspheres of uniformly bounded volume and arbitrarily large Morse index. The phenomena we exhibit are in striking contrast with the three-dimensional compactness results by Choi-Schoen.
2019
5
Carlotto, A
Minimal hyperspheres of arbitrarily large Morse index / Carlotto, A. - In: COMMUNICATIONS IN ANALYSIS AND GEOMETRY. - ISSN 1019-8385. - 27:5(2019), pp. 991-1023. [10.4310/CAG.2019.v27.n5.a1]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/378261
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact