We prove that if an asymptotically Schwarzschildean 3-manifold (M, g) contains a properly embedded stable minimal surface, then it is isometric to the Euclidean space. This implies, for instance, that in presence of a positive ADM mass any sequence of solutions to the Plateau problem with diverging boundaries can never have uniform height bounds, even at a single point. An analogous result holds true up to ambient dimension seven provided polynomial volume growth on the hypersurface is assumed.

Rigidity of stable minimal hypersurfaces in asymptotically flat spaces / Carlotto, A.. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 55:3(2016). [10.1007/s00526-016-0989-4]

Rigidity of stable minimal hypersurfaces in asymptotically flat spaces

Carlotto A.
2016-01-01

Abstract

We prove that if an asymptotically Schwarzschildean 3-manifold (M, g) contains a properly embedded stable minimal surface, then it is isometric to the Euclidean space. This implies, for instance, that in presence of a positive ADM mass any sequence of solutions to the Plateau problem with diverging boundaries can never have uniform height bounds, even at a single point. An analogous result holds true up to ambient dimension seven provided polynomial volume growth on the hypersurface is assumed.
2016
3
Carlotto, A.
Rigidity of stable minimal hypersurfaces in asymptotically flat spaces / Carlotto, A.. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 55:3(2016). [10.1007/s00526-016-0989-4]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/378259
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 12
  • OpenAlex ND
social impact