We characterize the rate of convergence of a converging volume-normalized Yamabe flow in terms of Morse-theoretic properties of the limiting metric. If the limiting metric is an integrable critical point for the Yamabe functional (for example, this holds when the critical point is nondegenerate), then we show that the flow converges exponentially fast. In general, we make use of a suitable Łojasiewicz–Simon inequality to prove that the slowest the flow will converge is polynomially. When the limit metric satisfies an Adams–Simon-type condition we prove that there exist flows converging to it exactly at a polynomial rate. We conclude by constructing explicit examples of this phenomenon. These seem to be the first examples of a slowly converging solution to a geometric flow.

Slowly converging Yamabe flows / Carlotto, A.; Chodosh, O.; Rubinstein, Y. A.. - In: GEOMETRY & TOPOLOGY. - ISSN 1465-3060. - 19:3(2015), pp. 1523-1568. [10.2140/gt.2015.19.1523]

Slowly converging Yamabe flows

Carlotto A.;
2015-01-01

Abstract

We characterize the rate of convergence of a converging volume-normalized Yamabe flow in terms of Morse-theoretic properties of the limiting metric. If the limiting metric is an integrable critical point for the Yamabe functional (for example, this holds when the critical point is nondegenerate), then we show that the flow converges exponentially fast. In general, we make use of a suitable Łojasiewicz–Simon inequality to prove that the slowest the flow will converge is polynomially. When the limit metric satisfies an Adams–Simon-type condition we prove that there exist flows converging to it exactly at a polynomial rate. We conclude by constructing explicit examples of this phenomenon. These seem to be the first examples of a slowly converging solution to a geometric flow.
2015
3
Carlotto, A.; Chodosh, O.; Rubinstein, Y. A.
Slowly converging Yamabe flows / Carlotto, A.; Chodosh, O.; Rubinstein, Y. A.. - In: GEOMETRY & TOPOLOGY. - ISSN 1465-3060. - 19:3(2015), pp. 1523-1568. [10.2140/gt.2015.19.1523]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/378258
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 13
  • OpenAlex ND
social impact