Checking food quality is crucial in food production and its commercialization. In this context, the analysis of macroscopic visual properties, like shape, color, and texture, plays an important role as a first assessment of food quality. Currently, such an analysis is mostly performed by human experts, who observe, smell, taste the food, and judge it based on their training and experience. Such an assessment is usually subjective, time-consuming, and expensive, so it is of great interest to support it with automated and objective advanced computer vision tools. In this paper, we present a deep learning method to estimate the rind thickness of Trentingrana cheese from color images acquired in a controlled environment. Rind thickness is a key feature for the commercial selection of this cheese and is commonly considered to evaluate its quality. We tested our method on 90 images of cheese slices, where we defined the ground-truth rind thickness using the measures provided by a panel of 12 experts. Our method achieved a Mean Absolute Error (MAE) of ≈ 0.5 mm, which is half the ≈ 1.2 mm error produced on average by the experts with respect to the defined ground-truth.
A Deep Learning Approach for Estimating the Rind Thickness of Trentingrana Cheese from Images / Caraffa, Andrea; Ricci, Michele; Lecca, Michela; Modena, Carla Maria; Aprea, Eugenio; Gasperi, Flavia; Messelodi, Stefano. - 1:(2023), pp. 76-83. (Intervento presentato al convegno Proceedings of the 3rd International Conference on Image Processing and Vision Engineering - IMPROVE tenutosi a Prague nel 21-23, April 2023) [10.5220/0011830000003497].
A Deep Learning Approach for Estimating the Rind Thickness of Trentingrana Cheese from Images
Ricci, Michele;Aprea, Eugenio;Gasperi, Flavia;Messelodi, Stefano
2023-01-01
Abstract
Checking food quality is crucial in food production and its commercialization. In this context, the analysis of macroscopic visual properties, like shape, color, and texture, plays an important role as a first assessment of food quality. Currently, such an analysis is mostly performed by human experts, who observe, smell, taste the food, and judge it based on their training and experience. Such an assessment is usually subjective, time-consuming, and expensive, so it is of great interest to support it with automated and objective advanced computer vision tools. In this paper, we present a deep learning method to estimate the rind thickness of Trentingrana cheese from color images acquired in a controlled environment. Rind thickness is a key feature for the commercial selection of this cheese and is commonly considered to evaluate its quality. We tested our method on 90 images of cheese slices, where we defined the ground-truth rind thickness using the measures provided by a panel of 12 experts. Our method achieved a Mean Absolute Error (MAE) of ≈ 0.5 mm, which is half the ≈ 1.2 mm error produced on average by the experts with respect to the defined ground-truth.File | Dimensione | Formato | |
---|---|---|---|
118300.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
958.89 kB
Formato
Adobe PDF
|
958.89 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione