We discuss the idea of a measurement that, making use of data from space interferometers, could detect the gravito-magnetic field generated by the rotation of the Milky Way, including the possible contribution of the dark matter halo. The galactic signal would be superposed to the gravito-magnetic field of the Sun. The proposed technique is based on the asymmetric propagation of light along the closed contour of the space interferometer, in a Sagnac-like approach. We discuss the principles of detection as well as some practical aspects of the proposed experiment using, as a case study, LISA, the most mature project to date. Both gravito-magnetic signals will be modulated thanks to the annual oscillation of the plane of the interferometer with respect to the galactic plane and to the spin axis of the Sun. Although larger than the detector intrinsic noise, these signals will be superposed to a much larger kinematic modulation due to orbital motion, making them very hard to be observed. We also mention a second phenomenon, where the gravito-magnetic field rotates the polarization of the propagating electromagnetic beams: the effect will be present in LISA, although exceedingly small and out of reach of present technology.

Detecting gravitomagnetism with space-based gravitational wave observatories / Tartaglia, A.; Bassan, M.; Pucacco, G.; Ferroni, V.; Vetrugno, D.. - In: CLASSICAL AND QUANTUM GRAVITY. - ISSN 0264-9381. - 39:19(2022), p. 195010. [10.1088/1361-6382/ac8962]

Detecting gravitomagnetism with space-based gravitational wave observatories

Ferroni V.;Vetrugno D.
2022-01-01

Abstract

We discuss the idea of a measurement that, making use of data from space interferometers, could detect the gravito-magnetic field generated by the rotation of the Milky Way, including the possible contribution of the dark matter halo. The galactic signal would be superposed to the gravito-magnetic field of the Sun. The proposed technique is based on the asymmetric propagation of light along the closed contour of the space interferometer, in a Sagnac-like approach. We discuss the principles of detection as well as some practical aspects of the proposed experiment using, as a case study, LISA, the most mature project to date. Both gravito-magnetic signals will be modulated thanks to the annual oscillation of the plane of the interferometer with respect to the galactic plane and to the spin axis of the Sun. Although larger than the detector intrinsic noise, these signals will be superposed to a much larger kinematic modulation due to orbital motion, making them very hard to be observed. We also mention a second phenomenon, where the gravito-magnetic field rotates the polarization of the propagating electromagnetic beams: the effect will be present in LISA, although exceedingly small and out of reach of present technology.
2022
19
Tartaglia, A.; Bassan, M.; Pucacco, G.; Ferroni, V.; Vetrugno, D.
Detecting gravitomagnetism with space-based gravitational wave observatories / Tartaglia, A.; Bassan, M.; Pucacco, G.; Ferroni, V.; Vetrugno, D.. - In: CLASSICAL AND QUANTUM GRAVITY. - ISSN 0264-9381. - 39:19(2022), p. 195010. [10.1088/1361-6382/ac8962]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/377510
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact